-
The first-principles all electron relativistic calculations within the general gradient approximation are performed to investigate the interface structure, the electronic and the optical absorption properties of quaternary InAs/GaSb superlattices with InSb or GaAs type of interface. Because of the complexity and low symmetry of the quaternary interfaces, the equilibrium structural parameters of relaxed interfaces are determined by the minimization of total electronic energy and strain in InAs/GaSb superlattices. The band structures and the optical absorption spectra of InAs/GaSb superlattices with special InSb or GaAs and normal (two types are alternate) interfaces are calculated, with the consideration of the superlattice interface atomic relaxation effects. The calculation of relativistic Hartree-Fock functional and local density approximation with the plane wave method is also implemented to demonstrate the calculated band structure results. The calculated band structures of InAs/GaSb superlattices with different types of interfaces are systematically compared. We find that the chemical bonding and ionicity of interfacial Sb atoms are essentially important in determining the interface structures, the band structures and the optical properties of InAs/GaSb superlattices.
-
Keywords:
- first-principles /
- InAs/GaSb superlattice /
- general gradient approximation /
- band structure
[1] Lu Y T, Sham L J 1989 Phys. Rev. B 40 5567
[2] Fujimoto H, Hamaguchi C, Nakazawa T, Tanihuchi K, Imanishi K 1990 Phys. Rev. B 41 7593
[3] Tanida Y, Ikeda M 1994 Phys. Rev. B 50 10958
[4] Park C H, Chang K J 1993 Phys. Rev. B 47 12709
[5] Arriaga J, Munoz M C, Velasco V R, Garcia-Moliner F 1991 Phys. Rev. B 43 9626
[6] Matsui Y, Kusumi Y, Nakaue A 1993 Phys. Rev. B 48 8827
[7] Szmulowicz F 1997 Phys. Rev. B 56 9972
[8] Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron. J. 32 593
[9] Wei S H, Zunger A 1996 Phys. Rev. Lett. 76 664
[10] Haugan H J, Szmulowicz F, Brown G J, Mahalingam K 2004 J. Appl. Phys. 96 2580
[11] Delley B 2000 J. Chem. Phys. 113 7756
[12] Andzelm J, King-Smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321
[13] Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[14] Gu Y M, Bylander D M, Kleinman L 1994 Phys. Rev. B 50 2227
[15] Shimojo F, Zempo Y, Hoshino K, Watabe M 1995 Phys. Rev. B 52 9320
[16] Luo J W, Bester G, Zunger A 2009 Phys. Rev. Lett. 102 056405
[17] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[18] van de Walle C G 1989 Phys. Rev. B 39 1871
[19] Al-Douri Y, Abid H, Aourag H 2002 Physica B 305 186
[20] Weast R C 1988 CRC Handbook of Chemistry and Physics (68th Ed.) (Boca Raton, Florida: CRC Press)
[21] Troullier N, Martins J L 1991 Phys. Rev. B 43 1993
[22] Al-Douri Y, Abid H, Aourag H 2002 Physica B 322 179
[23] Kim Y S, Marsman M, Kresse G 2010 Phys. Rev. B 82 205212
[24] Jhabvala M, Choi K K, Monroy C, La A 2007 Infrared Phys. Technol. 50 234
[25] Heller E, Fisher K F, Szmulowicz F, Madarasz F L 1995 J. Appl. Phys. 77 5739
[26] Sherwin M E, Drummond T J 1991 J. Appl. Phys. 69 8423
[27] Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719
[28] Brothers E N, Izmaylov A F, Normand J O, Barone V, Scuseria G E 2008 J. Chem. Phys. 129 011102
[29] Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14
[30] Brown G J, Houston S, Szmulowicz F 2004 Physica E 20 471
[31] Bylander D M, Kleinman L 1996 Int. J. Mod. Phys. B 10 399
[32] Satpati B, Rodriguez J B, Trampert A, Tournie E, Joullie A, Christol P 2007 J. Cryst Growth 301 889
-
[1] Lu Y T, Sham L J 1989 Phys. Rev. B 40 5567
[2] Fujimoto H, Hamaguchi C, Nakazawa T, Tanihuchi K, Imanishi K 1990 Phys. Rev. B 41 7593
[3] Tanida Y, Ikeda M 1994 Phys. Rev. B 50 10958
[4] Park C H, Chang K J 1993 Phys. Rev. B 47 12709
[5] Arriaga J, Munoz M C, Velasco V R, Garcia-Moliner F 1991 Phys. Rev. B 43 9626
[6] Matsui Y, Kusumi Y, Nakaue A 1993 Phys. Rev. B 48 8827
[7] Szmulowicz F 1997 Phys. Rev. B 56 9972
[8] Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron. J. 32 593
[9] Wei S H, Zunger A 1996 Phys. Rev. Lett. 76 664
[10] Haugan H J, Szmulowicz F, Brown G J, Mahalingam K 2004 J. Appl. Phys. 96 2580
[11] Delley B 2000 J. Chem. Phys. 113 7756
[12] Andzelm J, King-Smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321
[13] Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[14] Gu Y M, Bylander D M, Kleinman L 1994 Phys. Rev. B 50 2227
[15] Shimojo F, Zempo Y, Hoshino K, Watabe M 1995 Phys. Rev. B 52 9320
[16] Luo J W, Bester G, Zunger A 2009 Phys. Rev. Lett. 102 056405
[17] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[18] van de Walle C G 1989 Phys. Rev. B 39 1871
[19] Al-Douri Y, Abid H, Aourag H 2002 Physica B 305 186
[20] Weast R C 1988 CRC Handbook of Chemistry and Physics (68th Ed.) (Boca Raton, Florida: CRC Press)
[21] Troullier N, Martins J L 1991 Phys. Rev. B 43 1993
[22] Al-Douri Y, Abid H, Aourag H 2002 Physica B 322 179
[23] Kim Y S, Marsman M, Kresse G 2010 Phys. Rev. B 82 205212
[24] Jhabvala M, Choi K K, Monroy C, La A 2007 Infrared Phys. Technol. 50 234
[25] Heller E, Fisher K F, Szmulowicz F, Madarasz F L 1995 J. Appl. Phys. 77 5739
[26] Sherwin M E, Drummond T J 1991 J. Appl. Phys. 69 8423
[27] Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719
[28] Brothers E N, Izmaylov A F, Normand J O, Barone V, Scuseria G E 2008 J. Chem. Phys. 129 011102
[29] Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14
[30] Brown G J, Houston S, Szmulowicz F 2004 Physica E 20 471
[31] Bylander D M, Kleinman L 1996 Int. J. Mod. Phys. B 10 399
[32] Satpati B, Rodriguez J B, Trampert A, Tournie E, Joullie A, Christol P 2007 J. Cryst Growth 301 889
Catalog
Metrics
- Abstract views: 8088
- PDF Downloads: 952
- Cited By: 0