搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局域交换场和电场调控的锗烯纳米带自旋过滤效应

相阳 郑军 李春雷 郭永

引用本文:
Citation:

局域交换场和电场调控的锗烯纳米带自旋过滤效应

相阳, 郑军, 李春雷, 郭永

Spin filter effect of germanene nanoribbon controlled by local exchange field and electric field

Xiang Yang, Zheng Jun, Li Chun-Lei, Guo Yong
PDF
HTML
导出引用
  • 基于非平衡格林函数方法, 理论研究了Z轴方向局域交换场和电场对锗烯纳米带中电子自旋极化输运性质的影响. 结果表明对锗烯的边缘区域施加强度大于其2倍有效自旋轨道耦合强度的交换场, 可使自旋向上和向下电子的能带在不同的能量区间产生带隙, 从而实现对不同自旋取向电子的100%过滤. 提出了一种利用电场辅助降低自旋过滤效应所需阈值交换场强度的方法. 研究表明, 同时对中心器件区域施加局域交换场和电场, 可以在小于有效自旋轨道耦合的弱交换场强度下, 在较大的能量窗口区域过滤自旋向上或向下的电子. 增大局域交换场强度, 自旋过滤效应所对应的能量区间显著增大.
    Germanene, which has been synthesized recently, is a single-layered material composed of germanium atoms. Almost all the striking properties of graphene can be transferred to germanene, because both of them have the same honeycomb lattice structure. In contrast with graphene, germanene has a sizable band gap and spin dependent helical edge states, which make it attractive candidate for spintronic applications. By using the nonequilibrium Green’s function method, the effects of Z-axis local exchange field and electric field on spin-polarized transport properties in germanene nanoribbon are studied theoretically. The results reveal that by exerting an exchange field with a strength greater than twice the effective spin-orbit coupling to the edge region of germanene, the spin resolved band gaps can be generated in different energy ranges, and thus 100% filtering of spin-up or spin-down electrons can be achieved. We theoretically propose a method to reduce the threshold exchange field strength for the spin filter effect by using the electric field. The results show that the spin-filter effect can be achieved in a larger energy range under a weaker exchange field when the electric field are applied to the entire central device region. With the increase of the local exchange field intensity, the energy range corresponding to the spin filter effect will increase significantly.
      通信作者: 郑军, zhengjun@bhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11604021, 11574173)、低维量子物理国家重点实验室开放课题(批准号: KF201806)和北京市教育委员会科技计划一般项目(批准号: KM201810028022)资助的课题.
      Corresponding author: Zheng Jun, zhengjun@bhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604021, 11574173), the Open Project of State Key Laboratory of Low-Dimensional Quantum Physics, China (Grant No. KF201806), and the Science-Technology Foundation from Education Commission of Beijing, China (Grant No. KM20180028022).
    [1]

    Geim A K, Novoselov K S 2006 Nat. Mater. 6 183

    [2]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Takeda K, Shiraishi K 1994 Phys. Rev. B 50 14916Google Scholar

    [4]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [5]

    Liu C C, W X Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [6]

    Seixas L, Padilha J E, Fazzio A 2014 Phys. Rev. B 89 195403Google Scholar

    [7]

    秦志辉 2017 66 216802Google Scholar

    Qin Z H 2017 Acta Phys. Sin. 66 216802Google Scholar

    [8]

    Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet A, Lay G L 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [9]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Takamura Y Y 2012 Phys. Rev. Lett. 108 245501Google Scholar

    [10]

    Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [11]

    Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M, Molle A 2014 Adv. Mater. 26 2096Google Scholar

    [12]

    Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X, Gao H 2014 J. Adv. Mater. 26 4820Google Scholar

    [13]

    Davila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002Google Scholar

    [14]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510Google Scholar

    [15]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J 2015 Nat. Mater. 14 1020Google Scholar

    [16]

    Zhang L, Bampoulis P, Rudenko A N, Yao Q, Houselt A V, Poelsema B, Katsnelson M I, Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804Google Scholar

    [17]

    Tabert C J, Nicol E J 2013 Phys. Rev. B 87 235426Google Scholar

    [18]

    Rachel S, Ezawa M 2014 Phys. Rev. B 89 195303Google Scholar

    [19]

    Saxena R, Saha A, Rao S 2015 Phys. Rev. B 92 245412Google Scholar

    [20]

    Liu D P, Yu Z M, Liu Y L 2016 Phys. Rev. B 94 155112Google Scholar

    [21]

    Tao L L, Cheung K T, Zhang L, Wang J 2017 Phys. Rev. B 95 121407Google Scholar

    [22]

    Tian H Y, Wang S K, Hu J G, Wang J 2015 J. Phys.: Condens. Matter 27 125005Google Scholar

    [23]

    Ren C, Zhou B, Sun M, Wang S, Li Y 2018 Appl. Phys. Express 11 063006Google Scholar

    [24]

    Szafran B, Mreńca-Kolasińska A, Rzeszotarski B 2018 Phys. Rev. B 97 165303Google Scholar

    [25]

    Zheng J, Chi F, Guo Y 2018 Phys. Rev. Appl. 9 024012Google Scholar

    [26]

    Zheng J, Chi F, Guo Y 2018 Appl. Phys. Lett. 113 112404Google Scholar

    [27]

    Luo M 2019 Phys. Rev. B 99 165407Google Scholar

    [28]

    Verma S, Kundu A 2019 Phys. Rev. B 99 121409Google Scholar

    [29]

    Ziese M, Thornton M J 2001 Spin Electronics (New York: Springer-Verlag) pp396−415

    [30]

    Fert A 2008 Rev. Mod. Phys. 80 1517Google Scholar

    [31]

    郭永, 顾秉林, 川添良幸 2000 49 1814Google Scholar

    Guo Y, Gu B L, Yoshiyuki K 2000 Acta Phys. Sin. 49 1814Google Scholar

    [32]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [33]

    Ezawa M 2012 Phys. Rev. Lett. 109 055502Google Scholar

    [34]

    Meir Y, Wingreen N S 1992 Phys. Rev. Lett. 68 2512Google Scholar

    [35]

    Lee D H, Joannopoulos J D 1981 Phys. Rev. B 23 4988Google Scholar

    [36]

    Lee D H, Joannopoulos J D 1981 Phys. Rev. B 23 4997Google Scholar

  • 图 1  (a)单层锗烯自旋过滤器件结构示意图(左、右两侧蓝色区域为左、右电极区域; 中间红色实线包围区域内为中心器件区; 灰色和黄色分别表示Z轴方向交换场和电场的施加区域); (b)单层锗烯自旋过滤器件侧视图(红色和蓝色小球分别代表锗烯翘曲层顶部和底部的锗原子)

    Fig. 1.  (a) Schematic structure of of germanene spin filter. The blue regions on the left and right side are left and right lead. The area surrounded by red solid line is the central device. The regions shown in gray and yellow are exerted to the Z-direction exchange field and electric field. (b) Side view of germanene spin filter. Red and yellow spheres represent atoms in the top and bottom buckled-layer of germanene.

    图 2  施加不同强度的局域交换场M时, 电导G与电子费米能量$E_{\rm F}$之间的关系(红色实线表示自旋向上的电子, 蓝色虚线表示自旋向下的电子) (a) M = 0.01t, 0.03t, 0.05t, 0.07t时的自旋相关电导; (b) M = 0.09t时的自旋相关电导

    Fig. 2.  Relationship between the conductance G and electron Fermi energy $E_{\rm F}$ when applying different values of local exchange field M: (a) Spin-dependent conductance with M = 0.01t, 0.03t, 0.05t, 0.07t; (b) spin-dependent conductance with M = 0.09t. The red solid line represents spin-up electrons and the blue dash line represents spin-down electrons.

    图 3  (a)无外场时锗烯的电子能带结构; (b)交换场强度为$M=0.09t$时的电子能带结构; 其中实心(空心)三角表示上(下)边缘态, 圆点表示体能带, 红色(蓝色)对应自旋向上(向下)的电子; (c)交换场强度为$M=0.09t$时自旋相关电导随着电子能量的变化

    Fig. 3.  (a) Energy-band diagram of germanene without external field; (b) energy-band diagram of germanene with local exchange field $M=0.09t$; the solid (hollow) triangle represents the upper (lower) edge state, the dot represents the energy band, the red (blue) colour corresponds to the spin-up (spin-down) electron; (c) the spin-dependent conductance as a function of electronic energy when $M=0.09t$.

    图 4  (a)局域交换场和电场强度为$M=\lambda_E=0.01t$$M=\lambda_E=0.03t$时自旋相关电导随着电子费米能量$E_{\rm F}$的变化; (b)交换场和电场强度为$M=\lambda_E=0.05t$时自旋相关电导随着电子费米能量$E_{\rm F}$的变化; (c)交换场和电场强度为$M=\lambda_E=0.03t$时的电子能带结构; 其中实心(空心)三角表示上(下)边缘态, 圆点表示体能带, 红色(蓝色)对应自旋向上(向下)的电子

    Fig. 4.  (a) The spin-dependent conductance as a function of electron Fermi energy $E_{\rm F}$ when $M=\lambda_E=0.01t$ and $M=\lambda_E=0.03t$; (b) the spin-dependent conductance vs electron Fermi energy $E_{\rm F}$ when $M=\lambda_E=0.05t$; (c) energy-band diagram of germanene with local exchange field and electric field $M=\lambda_E=0.03t$. The solid (hollow) triangle represents the upper (lower) edge state, the dot represents the energy band, the red (blue) colour corresponds to the spin-up (spin-down) electron.

    Baidu
  • [1]

    Geim A K, Novoselov K S 2006 Nat. Mater. 6 183

    [2]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Takeda K, Shiraishi K 1994 Phys. Rev. B 50 14916Google Scholar

    [4]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [5]

    Liu C C, W X Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [6]

    Seixas L, Padilha J E, Fazzio A 2014 Phys. Rev. B 89 195403Google Scholar

    [7]

    秦志辉 2017 66 216802Google Scholar

    Qin Z H 2017 Acta Phys. Sin. 66 216802Google Scholar

    [8]

    Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet A, Lay G L 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [9]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Takamura Y Y 2012 Phys. Rev. Lett. 108 245501Google Scholar

    [10]

    Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [11]

    Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M, Molle A 2014 Adv. Mater. 26 2096Google Scholar

    [12]

    Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X, Gao H 2014 J. Adv. Mater. 26 4820Google Scholar

    [13]

    Davila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002Google Scholar

    [14]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510Google Scholar

    [15]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J 2015 Nat. Mater. 14 1020Google Scholar

    [16]

    Zhang L, Bampoulis P, Rudenko A N, Yao Q, Houselt A V, Poelsema B, Katsnelson M I, Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804Google Scholar

    [17]

    Tabert C J, Nicol E J 2013 Phys. Rev. B 87 235426Google Scholar

    [18]

    Rachel S, Ezawa M 2014 Phys. Rev. B 89 195303Google Scholar

    [19]

    Saxena R, Saha A, Rao S 2015 Phys. Rev. B 92 245412Google Scholar

    [20]

    Liu D P, Yu Z M, Liu Y L 2016 Phys. Rev. B 94 155112Google Scholar

    [21]

    Tao L L, Cheung K T, Zhang L, Wang J 2017 Phys. Rev. B 95 121407Google Scholar

    [22]

    Tian H Y, Wang S K, Hu J G, Wang J 2015 J. Phys.: Condens. Matter 27 125005Google Scholar

    [23]

    Ren C, Zhou B, Sun M, Wang S, Li Y 2018 Appl. Phys. Express 11 063006Google Scholar

    [24]

    Szafran B, Mreńca-Kolasińska A, Rzeszotarski B 2018 Phys. Rev. B 97 165303Google Scholar

    [25]

    Zheng J, Chi F, Guo Y 2018 Phys. Rev. Appl. 9 024012Google Scholar

    [26]

    Zheng J, Chi F, Guo Y 2018 Appl. Phys. Lett. 113 112404Google Scholar

    [27]

    Luo M 2019 Phys. Rev. B 99 165407Google Scholar

    [28]

    Verma S, Kundu A 2019 Phys. Rev. B 99 121409Google Scholar

    [29]

    Ziese M, Thornton M J 2001 Spin Electronics (New York: Springer-Verlag) pp396−415

    [30]

    Fert A 2008 Rev. Mod. Phys. 80 1517Google Scholar

    [31]

    郭永, 顾秉林, 川添良幸 2000 49 1814Google Scholar

    Guo Y, Gu B L, Yoshiyuki K 2000 Acta Phys. Sin. 49 1814Google Scholar

    [32]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [33]

    Ezawa M 2012 Phys. Rev. Lett. 109 055502Google Scholar

    [34]

    Meir Y, Wingreen N S 1992 Phys. Rev. Lett. 68 2512Google Scholar

    [35]

    Lee D H, Joannopoulos J D 1981 Phys. Rev. B 23 4988Google Scholar

    [36]

    Lee D H, Joannopoulos J D 1981 Phys. Rev. B 23 4997Google Scholar

  • [1] 郑军, 马力, 李春雷, 袁瑞旸, 郭亚涛, 付旭日. 自旋偏压驱动的硅烯和锗烯光控晶体管.  , 2022, 71(19): 198502. doi: 10.7498/aps.71.20221047
    [2] 郑军, 马力, 相阳, 李春雷, 袁瑞旸, 陈箐. 不同方向局域交换场对锡烯自旋输运的影响.  , 2022, 71(14): 147201. doi: 10.7498/aps.71.20220277
    [3] 孙玉鑫, 吴德凡, 赵统, 兰武, 杨德仁, 马向阳. 直拉硅单晶的机械强度: 锗和氮共掺杂的效应.  , 2021, 70(9): 098101. doi: 10.7498/aps.70.20201803
    [4] 肖美霞, 冷浩, 宋海洋, 王磊, 姚婷珍, 何成. 有机分子吸附和衬底调控锗烯的电子结构.  , 2021, 70(6): 063101. doi: 10.7498/aps.70.20201657
    [5] 杨维, 韩江朝, 曹元, 林晓阳, 赵巍胜. Fe3GeTe2/h-BN/石墨烯二维异质结器件中的高效率自旋注入.  , 2021, 70(12): 129101. doi: 10.7498/aps.70.20202136
    [6] 李鑫, 黄忠梅, 刘世荣, 彭鸿雁, 黄伟其. 掺氧纳米硅局域态中的电子自旋能级展宽效应.  , 2020, 69(17): 174206. doi: 10.7498/aps.69.20200336
    [7] 王孜博, 江华, 谢心澄. 多端口石墨烯系统中的非局域电阻.  , 2017, 66(21): 217201. doi: 10.7498/aps.66.217201
    [8] 秦志辉. 类石墨烯锗烯研究进展.  , 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [9] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性.  , 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [10] 武红, 李峰. GeH/层间弱相互作用调控锗烯电子结构的机制.  , 2016, 65(9): 096801. doi: 10.7498/aps.65.096801
    [11] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间.  , 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [12] 朱朕, 李春先, 张振华. 功能化扶手椅型石墨烯纳米带异质结的磁器件特性.  , 2016, 65(11): 118501. doi: 10.7498/aps.65.118501
    [13] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能.  , 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [14] 张弦, 郭志新, 曹觉先, 肖思国, 丁建文. GaAs(111)表面硅烯、锗烯的几何及电子性质研究.  , 2015, 64(18): 186101. doi: 10.7498/aps.64.186101
    [15] 李亚明, 刘智, 薛春来, 李传波, 成步文, 王启明. 基于Franz-Keldysh效应的倏逝波锗硅电吸收调制器设计.  , 2013, 62(11): 114208. doi: 10.7498/aps.62.114208
    [16] 金莲, 朱林, 李玲, 谢征微. 多层结构双自旋过滤隧道结中的电子输运特性.  , 2009, 58(12): 8577-8583. doi: 10.7498/aps.58.8577
    [17] 朱 林, 陈卫东, 谢征微, 李伯臧. NM/FI/NI/FI/NM新型双自旋过滤隧道结的隧穿电导和隧穿磁电阻.  , 2006, 55(10): 5499-5505. doi: 10.7498/aps.55.5499
    [18] 徐荣青, 王嘉赋, 周青春. 极向Kerr效应对电子自旋交换劈裂的依赖性.  , 2002, 51(9): 2161-2166. doi: 10.7498/aps.51.2161
    [19] 陈光华, 于工, 张仿清, 吴天喜. 氢化非晶锗碳薄膜中的自旋缺陷态.  , 1992, 41(10): 1700-1705. doi: 10.7498/aps.41.1700
    [20] 雷啸霖. 强交换场中无隙超导电性的Eliashberg方程研究.  , 1984, 33(2): 266-272. doi: 10.7498/aps.33.266
计量
  • 文章访问数:  8814
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-27
  • 修回日期:  2019-06-17
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回
Baidu
map