Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Directed weighted complex networks based on time series symbolic pattern representation

Zeng Ming Wang Er-Hong Zhao Ming-Yuan Meng Qing-Hao

Citation:

Directed weighted complex networks based on time series symbolic pattern representation

Zeng Ming, Wang Er-Hong, Zhao Ming-Yuan, Meng Qing-Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Complex networks are capable of modeling different kinds of complex systems in nature and technology, which contain a large number of components interacting with each other in a complicated manner. Quite recently, various approaches to analyzing time series by means of complex networks have been proposed, and their great potentials for uncovering valuable information embedded in time series, especially when nonlinear dynamical systems are incapable of being described by theoretical models have been proven. Despite the existing contributions, up to now, mapping time series into complex networks is still a challenging problem. In order to more effectively dig out the structural characteristics of time series (especially the nonlinear time series) and simplify the computational complexity of time series analysis, in this paper we present a novel method of constructing a directed weighted complex network based on time series symbolic pattern representation combined with sliding window technique. The proposed method firstly implements symbolic procession according to the equal probability segment division and then combines with the sliding window technique to determine the symbolic patterns at different times as nodes of the network. Next, the transition frequency and direction of symbolic patterns are set as the weights and directions of the network edges, thus establishing the directed weighted complex network of the analyzed time series. The results of test using the Logistic system with different parameter settings show that the topological structures of the directed weighted complex network can not only intuitively distinguish the periodic time series and chaotic time series, but also accurately reflect the subtle changes of two types of time series. These results are superior to those from the classical visibility graph method which can be only roughly classified as two types of signals. Finally, the proposed technique is used to investigate the natural wind field signals collected at an outdoor open space in which nine high precision two-dimensional (2D) ultrasonic anemometers are deployed in line with 1 m interval. The topological parameters of the network analysis include the network size, weighted clustering coefficient, and average path length. The corresponding results of our approach indicate that the values of three network parameters show consistent increase or decrease trend with the spatial regular arrangement of the nine anemometers. While the results of the visibility graph network parameters are irregular, and cannot accurately predict the spatial deployment relationship of nine 2D ultrasonic anemometers. These interesting findings suggest that topological features of the directed weighted complex network are potentially valuable characteristics of wind signals, which will have broad applications in researches such as wind power prediction, wind pattern classification and wind field dynamic analysis.
      Corresponding author: Zeng Ming, zengming@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271321, 61573253).
    [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabasi A L, Albert R 1999 Science 286 509

    [3]

    Albert R, Barabsi A L 2002 Rev. Mod. Phys. 74 47

    [4]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [5]

    Rubinov M, Sporns O 2010 Neuroimage 52 1059

    [6]

    Zhuang E, Small M, Feng G 2014 Physica A 410 483

    [7]

    Hao X, An H, Qi H, Gao X Zhou L, Gong Z Q, Zhi R, Feng G L 2008 Acta Phys. Sin. 57 7380 (in Chinese) [周磊, 龚志强, 支蓉, 封国林 2008 57 7380]

    [8]

    Zhou L, Gong Z Q, Zhi R, Feng G L 2008 Acta Phys.Sin. 57 7380 (in Chinese) [周磊, 龚志强, 支蓉, 封国林 2008 57 7380]

    [9]

    Lacasa L, Toral R 2010 Phys. Rev. E 82 036120

    [10]

    Xu X, Zhang J, Small M 2008 Proc. Natl. Acad. Sci. USA 105 19601

    [11]

    Donges J F, Donner R V, Kurths J 2013 Europhys. Lett. 102 10004

    [12]

    Zou Y, Small M, Liu Z 2014 New J. Phys. 16 013051

    [13]

    Huang X, An H, Gao X 2015 Physica A 428 493

    [14]

    Zhang J, Small M 2006 Phys. Rev. Lett. 96 238701

    [15]

    Gao Z K, Fang P C, Ding M S, Jin N D 2015 Exp. Therm. Fluid Sci. 60 157

    [16]

    Takens F 1981 Dynamical Systems and Turbulence, Warwick 1980 898 366

    [17]

    Yang Y, Yang H 2008 Physica A 387 1381

    [18]

    Gao Z, Jin N 2009 Chaos 19 033137

    [19]

    Tang J, Liu F, Zhang W, Zhang S, Wang Y 2016 Physica A 450 635

    [20]

    Webber C L, Zbilut J P 1994 J. Appl. Phys. 76 965

    [21]

    Lacasa L, Luque B, Ballesteros F, Luque J, Nuno J C 2008 Proc. Natl. Acad. Sci. USA 105 13

    [22]

    Gao Z K, Hu L D, Zhou T T, Jin N D 2013 Acta Phys. Sin. 62 110507 (in Chinese) [高忠科, 胡沥丹, 周婷婷, 金宁德 2013 62 110507]

    [23]

    Liu C, Zhou W X, Yuan W K 2010 Physica A 389 2675

    [24]

    Lin J, Keogh E, Lonardi S, Chiu B 2003 Proceedings of the 8th ACM SIGMOD workshop on Research Issues in Data Mining and Knowledge Discovery San Diego, USA, June 13, 2003 p2

    [25]

    Lin J, Keogh E, Li W, Lonardi S 2007 Data Mining and Knowledge Discovery 15 107

    [26]

    L J H, Lu J A, Chen S H 2001 Chaotic Time Series Analysis and Application (Wuhan: Wuhan University Press) p12 (in Chinese) [吕金虎, 陆君安, 陈士华 2001 混沌时间序列分析及其应用 (武汉: 武汉大学出版社)第12页]

    [27]

    Shirazi A H, Jafari G R, Davoudi J, Peinke J, Tabar M R R, Sahimi M 2009 J. Statist. Mech.: Theory and Experiment 2009 P07046

    [28]

    Antoniou I E, Tsompa E T 2008 Discrete Dyn. Nat. Soc. 2008 1

    [29]

    Li J G, Meng Q H, Wang Y, Zeng M 2011 Autonomous Robots 30 281

  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabasi A L, Albert R 1999 Science 286 509

    [3]

    Albert R, Barabsi A L 2002 Rev. Mod. Phys. 74 47

    [4]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [5]

    Rubinov M, Sporns O 2010 Neuroimage 52 1059

    [6]

    Zhuang E, Small M, Feng G 2014 Physica A 410 483

    [7]

    Hao X, An H, Qi H, Gao X Zhou L, Gong Z Q, Zhi R, Feng G L 2008 Acta Phys. Sin. 57 7380 (in Chinese) [周磊, 龚志强, 支蓉, 封国林 2008 57 7380]

    [8]

    Zhou L, Gong Z Q, Zhi R, Feng G L 2008 Acta Phys.Sin. 57 7380 (in Chinese) [周磊, 龚志强, 支蓉, 封国林 2008 57 7380]

    [9]

    Lacasa L, Toral R 2010 Phys. Rev. E 82 036120

    [10]

    Xu X, Zhang J, Small M 2008 Proc. Natl. Acad. Sci. USA 105 19601

    [11]

    Donges J F, Donner R V, Kurths J 2013 Europhys. Lett. 102 10004

    [12]

    Zou Y, Small M, Liu Z 2014 New J. Phys. 16 013051

    [13]

    Huang X, An H, Gao X 2015 Physica A 428 493

    [14]

    Zhang J, Small M 2006 Phys. Rev. Lett. 96 238701

    [15]

    Gao Z K, Fang P C, Ding M S, Jin N D 2015 Exp. Therm. Fluid Sci. 60 157

    [16]

    Takens F 1981 Dynamical Systems and Turbulence, Warwick 1980 898 366

    [17]

    Yang Y, Yang H 2008 Physica A 387 1381

    [18]

    Gao Z, Jin N 2009 Chaos 19 033137

    [19]

    Tang J, Liu F, Zhang W, Zhang S, Wang Y 2016 Physica A 450 635

    [20]

    Webber C L, Zbilut J P 1994 J. Appl. Phys. 76 965

    [21]

    Lacasa L, Luque B, Ballesteros F, Luque J, Nuno J C 2008 Proc. Natl. Acad. Sci. USA 105 13

    [22]

    Gao Z K, Hu L D, Zhou T T, Jin N D 2013 Acta Phys. Sin. 62 110507 (in Chinese) [高忠科, 胡沥丹, 周婷婷, 金宁德 2013 62 110507]

    [23]

    Liu C, Zhou W X, Yuan W K 2010 Physica A 389 2675

    [24]

    Lin J, Keogh E, Lonardi S, Chiu B 2003 Proceedings of the 8th ACM SIGMOD workshop on Research Issues in Data Mining and Knowledge Discovery San Diego, USA, June 13, 2003 p2

    [25]

    Lin J, Keogh E, Li W, Lonardi S 2007 Data Mining and Knowledge Discovery 15 107

    [26]

    L J H, Lu J A, Chen S H 2001 Chaotic Time Series Analysis and Application (Wuhan: Wuhan University Press) p12 (in Chinese) [吕金虎, 陆君安, 陈士华 2001 混沌时间序列分析及其应用 (武汉: 武汉大学出版社)第12页]

    [27]

    Shirazi A H, Jafari G R, Davoudi J, Peinke J, Tabar M R R, Sahimi M 2009 J. Statist. Mech.: Theory and Experiment 2009 P07046

    [28]

    Antoniou I E, Tsompa E T 2008 Discrete Dyn. Nat. Soc. 2008 1

    [29]

    Li J G, Meng Q H, Wang Y, Zeng M 2011 Autonomous Robots 30 281

  • [1] Ma Zhi-Yi, Yang Xiao-Dong, He Ai-Jun, Ma Lu, Wang Jun. Complex network recognition of electrocardiograph signals in health and myocardial infarction patients based on multiplex visibility graph. Acta Physica Sinica, 2022, 71(5): 050501. doi: 10.7498/aps.71.20211656
    [2] ECG signals’complex network recognition for health and Myocardial Infarction based on multiplex visibility graph. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211656
    [3] Huo Cheng-Yu, Ma Xiao-Fei, Ning Xin-Bao. Research of short-term heart rate variability during sleep based on limited penetrable horizontal visibility graph. Acta Physica Sinica, 2017, 66(16): 160502. doi: 10.7498/aps.66.160502
    [4] Xing Xue, Yu De-Xin, Tian Xiu-Juan, Wang Shi-Guang. Analysis of multi-state traffic flow time series properties using visibility graph. Acta Physica Sinica, 2017, 66(23): 230501. doi: 10.7498/aps.66.230501
    [5] Gao Zhong-Ke, Hu Li-Dan, Zhou Ting-Ting, Jin Ning-De. Limited penetrable visibility graph from two-phase flow for investigating flow pattern dynamics. Acta Physica Sinica, 2013, 62(11): 110507. doi: 10.7498/aps.62.110507
    [6] Yang Lin-Jing, Dai Zu-Cheng. The effects of correlated time between noises on stability of unstable state in Logistic system. Acta Physica Sinica, 2012, 61(10): 100509. doi: 10.7498/aps.61.100509
    [7] Lü Tian-Yang, Xie Wen-Yan, Zheng Wei-Min, Piao Xiu-Feng. Analysis of community evaluation criterion and discovery algorithm of weighted complex network. Acta Physica Sinica, 2012, 61(21): 210511. doi: 10.7498/aps.61.210511
    [8] Yan Peng-Cheng, Hou Wei, Hu Jing-Guo. The critical warning research of the mean time series mutations based on Logistic model. Acta Physica Sinica, 2012, 61(18): 189202. doi: 10.7498/aps.61.189202
    [9] Gao Zhong-Ke, Jin Ning-De, Yang Dan, Zhai Lu-Sheng, Du Meng. Complex networks from multivariate time series for characterizing nonlinear dynamics of two-phase flow patterns. Acta Physica Sinica, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [10] Zhou Ting-Ting, Jin Ning-De, Gao Zhong-Ke, Luo Yue-Bin. Limited penetrable visibility graph for establishing complex network from time series. Acta Physica Sinica, 2012, 61(3): 030506. doi: 10.7498/aps.61.030506
    [11] Pan Xin-Yu, Zhao He-Ming. Research on the entropy of logistic chaos. Acta Physica Sinica, 2012, 61(20): 200504. doi: 10.7498/aps.61.200504
    [12] Yang Lin-Jing. Effects of time delay on transition rate of state in an increasing process of Logistic system. Acta Physica Sinica, 2011, 60(5): 050502. doi: 10.7498/aps.60.050502
    [13] Yang Ru, Zhang Bo, Zhao Shou-Bai, Lao Yu-Jin. Arithmetic complexity of discrete map of converter based on symbol time series. Acta Physica Sinica, 2010, 59(6): 3756-3762. doi: 10.7498/aps.59.3756
    [14] Dong Zhao, Li Xiang. The study of network motifs induced from discrete time series. Acta Physica Sinica, 2010, 59(3): 1600-1607. doi: 10.7498/aps.59.1600
    [15] Song Wei, Hou Jian-Jun, Li Zhao-Hong, Huang Liang. A novel zero-bit watermarking algorithm based on Logistic chaotic system and singular value decomposition. Acta Physica Sinica, 2009, 58(7): 4449-4456. doi: 10.7498/aps.58.4449
    [16] Guo Yong-Feng, Xu Wei. Time-delayed Logistic system driven by correlated Gaussian white noises. Acta Physica Sinica, 2008, 57(10): 6081-6085. doi: 10.7498/aps.57.6081
    [17] Hou Wei, Feng Guo-Lin, Gao Xin-Quan, Chou Ji-Fan. Investigation on the time series of ice core and stalagmite based on the analysis of complexity. Acta Physica Sinica, 2005, 54(5): 2441-2447. doi: 10.7498/aps.54.2441
    [18] Xie Kun, Lei Min, Feng Zheng-Jin. A study of a kind of hyper chaotic cryptosystem security. Acta Physica Sinica, 2005, 54(3): 1267-1272. doi: 10.7498/aps.54.1267
    [19] LIU YAO-ZONG, WEN XI-SEN, HU NIAO-QING. SURROGATE DATA TEST FOR THE LINEAR NON-GAUSSIAN TIME SERIES WITH NON-MINIMUM PHASE. Acta Physica Sinica, 2001, 50(4): 633-637. doi: 10.7498/aps.50.633
    [20] YANG ZHI-AN, CHEN SHI-GANG, WANG GUANG-RUI. ANALYSIS OF TIME SERIES RECONSTRUCTION FOR DYNAMIC SYSTEM. Acta Physica Sinica, 1996, 45(6): 904-911. doi: 10.7498/aps.45.904
Metrics
  • Abstract views:  7118
  • PDF Downloads:  424
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2017
  • Accepted Date:  03 July 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map