Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evaluation method of node importance in directed-weighted complex network based on multiple influence matrix

Wang Yu Guo Jin-Li

Citation:

Evaluation method of node importance in directed-weighted complex network based on multiple influence matrix

Wang Yu, Guo Jin-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In complex networks, the node importance evaluation is of great significance for studying the robustness of network. The existing methods of evaluating the node importance mainly focus on undirected and unweighted networks, which fail to reflect the real scenarios comprehensively and objectively. In this paper, according to the directed and weighted complex network model, by analyzing the local importance of the nodes and the dependencies among all the nodes in the whole network, a new method of evaluating the node importance based on a multiple influence matrix is proposed. Firstly, the method defines the concept of cross strength to characterize the local importance of the nodes. The index not only distinguishes between the in-strength and out-strength of the nodes, but also helps to discriminate the differences in importance among each with an in-degree of 0. In addition, to characterize the global importance of the nodes to be evaluated, we use the total important influence value of all the nodes exerted on the nodes, which makes up the deficiencies of the other evaluation methods which just depend on adjacent nodes. Emphatically, in the analysis of the influence ratio of source node on node to be evaluated, we not only take into account the distance factor between nodes, but also introduce the number of the shortest path factors. In order to make the evaluation algorithm more accurate, according to the number of the shortest paths, we present two perspectives to analyze how other factors affect the influence ratio. One is to evaluate how this source node exerts important influence on the other nodes to be evaluated. The other is to analyze how the other source nodes perform important influence on this node to be evaluated. In view of the above factors, three influence matrices are constructed, including the efficiency matrix, and the other two influence matrices from the perspectives of fixing source nodes and target nodes, respectively. Then, we use analytic hierarchy process to weight the three matrices, thereby obtaining the multiple influence matrix, which makes the global importance evaluation more comprehensive. Finally, the method is applied to typical directed weighted networks. It is found that compared with other methods, our method can effectively distinguish between nodes. Furthermore, we carry out simulation experiments of cascading failure on each method. The simulation results further verify the effectiveness of the proposed method.
      Corresponding author: Guo Jin-Li, phd5816@163.com
    • Funds: Project Supported by the National Natural Science Foundation of China (Grant No. 71571119).
    [1]

    Barabsi A L, Bonabeau E 2003 Sci.Am.28850

    [2]

    LL Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016Phys.Rep. 650 1

    [3]

    Batool K, Niazi M A 2014PLoS One 9 e90283

    [4]

    Zhang Y L, Yang N D, Lall U 2016J.Syst.Sci.Syst.Eng. 25 102

    [5]

    Liu Y H, Jin J Z, Zhang Y, Xu C 2014 J.Supercomput.67723

    [6]

    Han Z M, Wu Y, Tan X S, Duan D G, Yang W J 2015Acta Phys.Sin. 64 058902(in Chinese)[韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰2015 64 058902]

    [7]

    Li S M, Xu X H 2015Chinese J.Aeronaut. 28 780

    [8]

    Fan W L, Hu P, Liu Z G 2016IET Gener.Transm.Distrib. 10 2027

    [9]

    Liu R R, Jia C X, Zhang J L, Wang B H 2012J.Univ.Shanghai Sci.Technol. 34 235(in Chinese)[刘润然, 贾春晓, 章剑林, 汪秉宏2012上海理工大学学报34 235]

    [10]

    Yu H, Liu Z, Li Y J 2013Acta Phys.Sin. 62 020204(in Chinese)[于会, 刘尊, 李勇军2013 62 020204]

    [11]

    Han Z M, Chen Y, Li M Q, Liu W, Yang W J 2016Acta Phys.Sin. 65 168901(in Chinese)[韩忠明, 陈炎, 李梦琪, 刘雯, 杨伟杰2016 65 168901]

    [12]

    Li J R, Yu L, Zhao J 2014J.UESTC. 43 322(in Chinese)[李静茹, 喻莉, 赵佳2014电子科技大学学报43 322]

    [13]

    Jeong H, Mason S, Barabsi A L 2001Nature 411 41

    [14]

    Freeman L 1977Sociometry 40 35

    [15]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010Nat.Phys. 6 888

    [16]

    LL Y, Zhang Y C, Yeung C H, Zhou T 2011PLoS One 6 e21202

    [17]

    Brin S, Page L 1998Comput.Net.ISDN Syst. 30 107

    [18]

    Xu J, Li J X, Xu S 2012J.Zhejiang Univ.:Sci.C 13 118

    [19]

    Wang B, Ma R N, Wang G, Chen B 2015J.Comput.Appl. 35 1820(in Chinese)[王班, 马润年, 王刚, 陈波2015计算机应用35 1820]

    [20]

    Zhou X, Zhang F M, Li K W, Hui X B, Wu H S 2012Acta Phys.Sin. 61 050201(in Chinese)[周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜2012 61 050201]

    [21]

    Hu P, Fan W L, Mei S W 2015Physica A:Stat.Mech.Appl. 429 169

    [22]

    Fan W L, Liu Z G 2014J.Southwest Jiaotong Univ. 49 337(in Chinese)[范文礼, 刘志刚2014西南交通大学学报49 337]

    [23]

    Kudelka M, Zehnalova S, Horak Z, Kromer P, Snasel V 2015Int.J.Appl.Math.Comput.Sci. 25 281

    [24]

    Thomas J B, Brier M R, Ortega M, Benzinger T L, Ances B M 2015Neurobiol.Aging 36 401

    [25]

    Latora V, Marchiori M 2007New J.Phys. 9 188

    [26]

    Shao F, Cheng B 2014Int.J.Comput.Commun.Cont. 9 602

    [27]

    Griffith D A, Chun Y 2015Netw.Spat.Econ. 15 337

    [28]

    Cai Q S, Liu Y, Niu J W, Sun L M 2015Acta Electron.Sinica. 43 1705(in Chinese)[蔡青松, 刘燕, 牛建伟, 孙利民2015电子学报43 1705]

    [29]

    Zhu Y, Meng Z Y, Kan S Y 1999J.Northern Jiaotong Univ. 23 119(in Chinese)[朱茵, 孟志勇, 阚叔愚1999北方交通大学学报23 119]

    [30]

    Sun S L, Lin J Y, Xie L H, Xiao W D 200722nd IEEE International Symposium on Intelligent Control Singapore, October 1-3, 2007 p7

  • [1]

    Barabsi A L, Bonabeau E 2003 Sci.Am.28850

    [2]

    LL Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016Phys.Rep. 650 1

    [3]

    Batool K, Niazi M A 2014PLoS One 9 e90283

    [4]

    Zhang Y L, Yang N D, Lall U 2016J.Syst.Sci.Syst.Eng. 25 102

    [5]

    Liu Y H, Jin J Z, Zhang Y, Xu C 2014 J.Supercomput.67723

    [6]

    Han Z M, Wu Y, Tan X S, Duan D G, Yang W J 2015Acta Phys.Sin. 64 058902(in Chinese)[韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰2015 64 058902]

    [7]

    Li S M, Xu X H 2015Chinese J.Aeronaut. 28 780

    [8]

    Fan W L, Hu P, Liu Z G 2016IET Gener.Transm.Distrib. 10 2027

    [9]

    Liu R R, Jia C X, Zhang J L, Wang B H 2012J.Univ.Shanghai Sci.Technol. 34 235(in Chinese)[刘润然, 贾春晓, 章剑林, 汪秉宏2012上海理工大学学报34 235]

    [10]

    Yu H, Liu Z, Li Y J 2013Acta Phys.Sin. 62 020204(in Chinese)[于会, 刘尊, 李勇军2013 62 020204]

    [11]

    Han Z M, Chen Y, Li M Q, Liu W, Yang W J 2016Acta Phys.Sin. 65 168901(in Chinese)[韩忠明, 陈炎, 李梦琪, 刘雯, 杨伟杰2016 65 168901]

    [12]

    Li J R, Yu L, Zhao J 2014J.UESTC. 43 322(in Chinese)[李静茹, 喻莉, 赵佳2014电子科技大学学报43 322]

    [13]

    Jeong H, Mason S, Barabsi A L 2001Nature 411 41

    [14]

    Freeman L 1977Sociometry 40 35

    [15]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010Nat.Phys. 6 888

    [16]

    LL Y, Zhang Y C, Yeung C H, Zhou T 2011PLoS One 6 e21202

    [17]

    Brin S, Page L 1998Comput.Net.ISDN Syst. 30 107

    [18]

    Xu J, Li J X, Xu S 2012J.Zhejiang Univ.:Sci.C 13 118

    [19]

    Wang B, Ma R N, Wang G, Chen B 2015J.Comput.Appl. 35 1820(in Chinese)[王班, 马润年, 王刚, 陈波2015计算机应用35 1820]

    [20]

    Zhou X, Zhang F M, Li K W, Hui X B, Wu H S 2012Acta Phys.Sin. 61 050201(in Chinese)[周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜2012 61 050201]

    [21]

    Hu P, Fan W L, Mei S W 2015Physica A:Stat.Mech.Appl. 429 169

    [22]

    Fan W L, Liu Z G 2014J.Southwest Jiaotong Univ. 49 337(in Chinese)[范文礼, 刘志刚2014西南交通大学学报49 337]

    [23]

    Kudelka M, Zehnalova S, Horak Z, Kromer P, Snasel V 2015Int.J.Appl.Math.Comput.Sci. 25 281

    [24]

    Thomas J B, Brier M R, Ortega M, Benzinger T L, Ances B M 2015Neurobiol.Aging 36 401

    [25]

    Latora V, Marchiori M 2007New J.Phys. 9 188

    [26]

    Shao F, Cheng B 2014Int.J.Comput.Commun.Cont. 9 602

    [27]

    Griffith D A, Chun Y 2015Netw.Spat.Econ. 15 337

    [28]

    Cai Q S, Liu Y, Niu J W, Sun L M 2015Acta Electron.Sinica. 43 1705(in Chinese)[蔡青松, 刘燕, 牛建伟, 孙利民2015电子学报43 1705]

    [29]

    Zhu Y, Meng Z Y, Kan S Y 1999J.Northern Jiaotong Univ. 23 119(in Chinese)[朱茵, 孟志勇, 阚叔愚1999北方交通大学学报23 119]

    [30]

    Sun S L, Lin J Y, Xie L H, Xiao W D 200722nd IEEE International Symposium on Intelligent Control Singapore, October 1-3, 2007 p7

  • [1] Li Jiang, Liu Ying, Wang Wei, Zhou Tao. Identifying influential nodes in spreading process in higher-order networks. Acta Physica Sinica, 2024, 73(4): 048901. doi: 10.7498/aps.73.20231416
    [2] Wang Bo-Ya, Yang Xiao-Chun, Lu Sheng-Rong, Tang Yong-Ping, Hong Shu-Quan, Jiang Hui-Yuan. A multidimensional node importance evaluation method based on graph convolutional networks. Acta Physica Sinica, 2024, 73(22): 226401. doi: 10.7498/aps.73.20240937
    [3] Wang Ting-Ting, Liang Zong-Wen, Zhang Ruo-Xi. Importance evaluation method of complex network nodes based on information entropy and iteration factor. Acta Physica Sinica, 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [4] Ruan Yi-Run, Lao Song-Yang, Tang Jun, Bai Liang, Guo Yan-Ming. Node importance ranking method in complex network based on gravity method. Acta Physica Sinica, 2022, 71(17): 176401. doi: 10.7498/aps.71.20220565
    [5] Lin Hong, Xia Yong-Xiang, Jiang Lu-Rong. Routing in spatial networks based on shortest path length. Acta Physica Sinica, 2022, 71(6): 068901. doi: 10.7498/aps.71.20211621
    [6] Liu Hui, Wang Bing-Jun, Lu Jun-An, Li Zeng-Yang. Node-set importance and optimization algorithm of nodes selection in complex networks based on pinning control. Acta Physica Sinica, 2021, 70(5): 056401. doi: 10.7498/aps.70.20200872
    [7] Yang Song-Qing, Jiang Yuan, Tong Tian-Chi, Yan Yu-Wei, Gan Ge-Sheng. A method of evaluating importance of nodes in complex network based on Tsallis entropy. Acta Physica Sinica, 2021, 70(21): 216401. doi: 10.7498/aps.70.20210979
    [8] Huang Li-Ya, Tang Ping-Chuan, Huo You-Liang, Zheng Yi, Cheng Xie-Feng. Node importance based on the weighted K-order propagation number algorithm. Acta Physica Sinica, 2019, 68(12): 128901. doi: 10.7498/aps.68.20190087
    [9] Yang Jian-Nan, Liu Jian-Guo, Guo Qiang. Node importance idenfication for temporal network based on inter-layer similarity. Acta Physica Sinica, 2018, 67(4): 048901. doi: 10.7498/aps.67.20172255
    [10] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [11] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Chen Li-Dong. Node importance measurement based on neighborhood similarity in complex network. Acta Physica Sinica, 2017, 66(3): 038902. doi: 10.7498/aps.66.038902
    [12] Hu Qing-Cheng, Yin Yan-Shen, Ma Peng-Fei, Gao Yang, Zhang Yong, Xing Chun-Xiao. A new approach to identify influential spreaders in complex networks. Acta Physica Sinica, 2013, 62(14): 140101. doi: 10.7498/aps.62.140101
    [13] Liu Jian-Guo, Ren Zhuo-Ming, Guo Qiang, Wang Bing-Hong. Node importance ranking of complex networks. Acta Physica Sinica, 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [14] Ren Zhuo-Ming, Shao Feng, Liu Jian-Guo, Guo Qiang, Wang Bing-Hong. Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [15] Yu Hui, Liu Zun, Li Yong-Jun. Key nodes in complex networks identified by multi-attribute decision-making method. Acta Physica Sinica, 2013, 62(2): 020204. doi: 10.7498/aps.62.020204
    [16] Zhang Shui-Jian, Liu Xue-Jun, Yang Yang. Dynamic stochastic shortest path algorithm. Acta Physica Sinica, 2012, 61(16): 160201. doi: 10.7498/aps.61.160201
    [17] Zhou Xuan, Zhang Feng-Ming, Li Ke-Wu, Hui Xiao-Bin, Wu Hu-Sheng. Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica, 2012, 61(5): 050201. doi: 10.7498/aps.61.050201
    [18] Dong Ji-Yang, Zhang Jun-Ying, Chen Zhong. Autowave-competition neural network and its application to the single-source shortest-paths problem. Acta Physica Sinica, 2007, 56(9): 5013-5020. doi: 10.7498/aps.56.5013
    [19] Li Ying, Shan Xiu-Ming, Ren Yong. Average path length of Internet with power law degree distribution. Acta Physica Sinica, 2004, 53(11): 3695-3700. doi: 10.7498/aps.53.3695
    [20] PENG HWAN-WU. IMPORTANCE OF LIFE TIME CORRELATION EXPERIMENTS. Acta Physica Sinica, 1962, 18(3): 165-166. doi: 10.7498/aps.18.165
Metrics
  • Abstract views:  10828
  • PDF Downloads:  571
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2016
  • Accepted Date:  23 November 2016
  • Published Online:  05 March 2017

/

返回文章
返回
Baidu
map