-
Weighted networks can give more detailed description of interaction between agents of corresponding systems. Link weight also provides another way to improve the properties and functions of networks. Based on the concept of network efficiency in binary networks, in this paper, the efficiency of weighted networks with similarity or dissimilarity weight is defined. The effect of weight distribution on the network efficiency are investigated. From the initial regular network with homogeneous link weights, a method is introduced to randomize the weight distribution over the links. The results demonstrate that the random redistribution of link weight can improve the network efficiency. Moreover, exponential distribution of link weight shows more significant improvement compared with the other common distributions, such as uniform, Poisson, Gauss, and power law distributions. Meanwhile, it is also found that the total weight of the corresponding minimum spanning tree is reduced with the randomization of link weight. That means the cost of transportation is decreased with the increase of link weight heterogeneity. All these results can help us get deeper understanding about the effect of link weight on the property and function of networks.
-
Keywords:
- complex network /
- weighted network /
- weight /
- efficiency of network
[1] Li Y, L L, Luan L 2009 Acta Phys. Sin. 58 4463 (in Chinese) [李 岩、吕 翎、栾 玲 2009 58 4463]
[2] [3] Xu Q X, Xu X J 2009 Chin. Phys. B 18 933
[4] [5] Latora V, Marchiori M 2001 Phys. Rev. Lett. 87 198701
[6] [7] Wu Z X, Peng G, Wong W M, Yeung K H 2008 J. Stat. Mech. P11002
[8] Li T, Pei W J, Wang S P 2009 Acta Phys. Sin. 58 5903 (in Chinese) [李 涛、裴文江、王少平 2009 58 5903]
[9] [10] [11] Yan G, Zhou T, Hu B, Fu Z Q, Wang B H 2006 Phys. Rev. E 73 046108
[12] Wang D, Jing Y W, Zhang S Y 2008 Physica A 387 3001
[13] [14] [15] Nagurney A, Qiang Q 2008 J. Glob. Opt. 40 261
[16] [17] Chen H L, Liu Z X, Chen Z Q, Yuan Z Z 2009 Acta Phys. Sin. 58 6068 (in Chinese) [陈华良、刘忠信、陈增强、袁著祉 2009 58 6068]
[18] [19] Watts D J, Strogatz S H 1998 Nature 393 440
[20] [21] Li M, Fan Y, Chen J, Gao L, Di Z, Wu J 2005 Physica A 350 643
[22] Zhang P, Li M, Wu J, Di Z, Fan Y 2006 Physica A 367 577
[23] [24] [25] Li D, Li M, Wu J, Di Z., Fan Y 2007 Eur. Phys. J. B 57 423
[26] [27] Li M, Fan Y, Wang D, Li D, Wu J, Di Z 2007 Phys. Lett. A 364 488
[28] Wu Z, Braunstein A L, Havlin S, Stanley H E 2006 Phys. Rev. Lett. 96 148702
[29] -
[1] Li Y, L L, Luan L 2009 Acta Phys. Sin. 58 4463 (in Chinese) [李 岩、吕 翎、栾 玲 2009 58 4463]
[2] [3] Xu Q X, Xu X J 2009 Chin. Phys. B 18 933
[4] [5] Latora V, Marchiori M 2001 Phys. Rev. Lett. 87 198701
[6] [7] Wu Z X, Peng G, Wong W M, Yeung K H 2008 J. Stat. Mech. P11002
[8] Li T, Pei W J, Wang S P 2009 Acta Phys. Sin. 58 5903 (in Chinese) [李 涛、裴文江、王少平 2009 58 5903]
[9] [10] [11] Yan G, Zhou T, Hu B, Fu Z Q, Wang B H 2006 Phys. Rev. E 73 046108
[12] Wang D, Jing Y W, Zhang S Y 2008 Physica A 387 3001
[13] [14] [15] Nagurney A, Qiang Q 2008 J. Glob. Opt. 40 261
[16] [17] Chen H L, Liu Z X, Chen Z Q, Yuan Z Z 2009 Acta Phys. Sin. 58 6068 (in Chinese) [陈华良、刘忠信、陈增强、袁著祉 2009 58 6068]
[18] [19] Watts D J, Strogatz S H 1998 Nature 393 440
[20] [21] Li M, Fan Y, Chen J, Gao L, Di Z, Wu J 2005 Physica A 350 643
[22] Zhang P, Li M, Wu J, Di Z, Fan Y 2006 Physica A 367 577
[23] [24] [25] Li D, Li M, Wu J, Di Z., Fan Y 2007 Eur. Phys. J. B 57 423
[26] [27] Li M, Fan Y, Wang D, Li D, Wu J, Di Z 2007 Phys. Lett. A 364 488
[28] Wu Z, Braunstein A L, Havlin S, Stanley H E 2006 Phys. Rev. Lett. 96 148702
[29]
Catalog
Metrics
- Abstract views: 11166
- PDF Downloads: 958
- Cited By: 0