-
提出了一种实现加权网络时空混沌投影同步的方法.通过构造合适的Lyapunov函数,确定了加权网络中连接节点之间耦合函数的结构以及网络节点状态方程中分离配置的线性项的系数矩阵的取值范围.以Bragg声光双稳系统作为局域函数,单向耦合映像格子作为空间扩展系统构成激光时空混沌模型.通过仿真模拟检验了采用激光时空混沌模型作为网络节点的加权网络的投影同步效果.结果显示,对于任意的节点之间耦合强度的权重值,加权网络的投影同步均可以实现.
-
关键词:
- 投影同步 /
- 加权网络 /
- 时空混沌 /
- Bragg声光双稳系统
A method is introduced to realize spatiotemporal chaos projective synchronization for a weighted network. The coupling function between connected nodes of the weighted network is derived and the range of the linear coefficient matrix of separated configuration in state equation of the node is obtained through constructing an appropriate Lyapunov function. Each node of the weight network is a laser spatiotemporal chaos model in which Bragg acousto-optical bistable system and unilateral coupled map lattices are taken as the local function and the spatial extended system, respectively. The projective synchronization effect of the weighted network is checked by numerical emulation. The results show that projective synchronization can be realized even if the coupling strength between the nodes are given arbitrary weight values.-
Keywords:
- projective synchronization /
- weighted network /
- spatiotemporal chaos /
- Bragg acousto-optical bistable system
[1] Watts D J, Strogatz S H 1998 Nature 393 440
[2] Barabási A L, Albert R 1999 Science 286 509
[3] Vázquez A, Pastor-Satorras R, Vespignani A 2002 Phys.Rev.E 65 66130
[4] Strogatz S H 2001 Nature 410 268
[5] Newman M E J, Strogatz S H, Watts D J 2001 Phys.Rev.E 64 26118
[6] Haken H 2005 Physica D 205 1
[7] Lü J H, Yu X H, Chen G R, Cheng D Z 2004 IEEE Trans.Circuits Syst.-I 51 787
[8] Lü L, Zhang C 2009 Acta Phys. Sin. 58 1462(in Chinese) [吕 翎、张 超2009 58 1462]
[9] Agnes E J,Erichsen Jr R,Brunnet L G 2010 Physica A 389 651
[10] Lü J H, Chen G R 2005 IEEE Trans.Auto.Contr. 50 841
[11] Zhou J, Lu J A, Lü J H 2006 IEEE Trans.Auto.Contr. 51 652
[12] Li K, Lai C H 2008 Phys. Lett.A 372 1601
[13] Jing X D, Lü L 2009 Acta Phys.Sin. 58 7539(in Chinese)[敬晓丹、吕 翎 2009 58 7539]
[14] Ma X J, Wang Y, Zheng Z G 2009 Acta Phys. Sin. 58 4426(in Chinese) [马晓娟、王 延、郑志刚2009 58 4426]
[15] Posadas-Castillo C, Cruz-Hernández C, López-Gutiérrez R M 2009 Chaos, Solitons and Fractals 40 1963
[16] Zhou C S, Motter A E, Kurths J 2006 Phys.Rev.Lett. 96 34101
[17] Motter A E, Zhou C S, Kurths J 2005 Europhys.Lett. 69 334
[18] Wang W X, Chen G R 2008 Phys.Rev.E 77 26201
[19] Vallee R, Delisle C, Chrostowski J 1984 Phys.Rev.A 30 336
[20] Kaneko K 1985 Phys.Lett.A 111 321
-
[1] Watts D J, Strogatz S H 1998 Nature 393 440
[2] Barabási A L, Albert R 1999 Science 286 509
[3] Vázquez A, Pastor-Satorras R, Vespignani A 2002 Phys.Rev.E 65 66130
[4] Strogatz S H 2001 Nature 410 268
[5] Newman M E J, Strogatz S H, Watts D J 2001 Phys.Rev.E 64 26118
[6] Haken H 2005 Physica D 205 1
[7] Lü J H, Yu X H, Chen G R, Cheng D Z 2004 IEEE Trans.Circuits Syst.-I 51 787
[8] Lü L, Zhang C 2009 Acta Phys. Sin. 58 1462(in Chinese) [吕 翎、张 超2009 58 1462]
[9] Agnes E J,Erichsen Jr R,Brunnet L G 2010 Physica A 389 651
[10] Lü J H, Chen G R 2005 IEEE Trans.Auto.Contr. 50 841
[11] Zhou J, Lu J A, Lü J H 2006 IEEE Trans.Auto.Contr. 51 652
[12] Li K, Lai C H 2008 Phys. Lett.A 372 1601
[13] Jing X D, Lü L 2009 Acta Phys.Sin. 58 7539(in Chinese)[敬晓丹、吕 翎 2009 58 7539]
[14] Ma X J, Wang Y, Zheng Z G 2009 Acta Phys. Sin. 58 4426(in Chinese) [马晓娟、王 延、郑志刚2009 58 4426]
[15] Posadas-Castillo C, Cruz-Hernández C, López-Gutiérrez R M 2009 Chaos, Solitons and Fractals 40 1963
[16] Zhou C S, Motter A E, Kurths J 2006 Phys.Rev.Lett. 96 34101
[17] Motter A E, Zhou C S, Kurths J 2005 Europhys.Lett. 69 334
[18] Wang W X, Chen G R 2008 Phys.Rev.E 77 26201
[19] Vallee R, Delisle C, Chrostowski J 1984 Phys.Rev.A 30 336
[20] Kaneko K 1985 Phys.Lett.A 111 321
计量
- 文章访问数: 8657
- PDF下载量: 796
- 被引次数: 0