搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加权网络权重自相似评判函数及其社团结构检测

沈毅 徐焕良

引用本文:
Citation:

加权网络权重自相似评判函数及其社团结构检测

沈毅, 徐焕良

The evaluation function of weight similarity and its application in community detection in weighted networks

Shen Yi, Xu Huan-Liang
PDF
导出引用
  • 提出了权重自相似性加权网络社团结构评判函数,并基于该函数提出一种谱分析算法检测社团结构,结果表明算法能将加权网络划分为同一社团内边权值分布均匀,而社团间边权值分布随机的社团结构.通过建立具有社团结构的加权随机网络分析了该算法的准确性,与WEO和WGN算法相比,在评判权重自相似的阈值系数取较小时,该算法具有较高的准确性.对于一个具有n个节点和c个社团的加权网络,社团结构检测的复杂度为O(cn2/2).通过设置评判权重自相似的阈值系
    An evaluation function of weight similarity in weighted network is proposed,and a spectral algorithm for detecting community structure based on the function is presented. The results show that the algorithm can divide the weighted network into several groups within each of them the edges weights distribute uniformly but at random between them. The algorithm is analyzed by constructing random weighted networks with known community structure. Compared with WEO and WGN,the algorithm has high accuracy when the threshold coefficient takes small values. For a network with n nodes and c communities,the computation complexity of the algorithm is O(cn2/2). By setting different threshold coefficients,a special hierarchical organization which describes the various steady connections between nodes in groups can be discovered by the algorithm. It is different from the conventional concept of community detection in weighted networks which divides the weighted network into several groups in which the edges weights are relatively larger than those in-between them,such that it extracts the information about the structure of weighted networks from another perspective.
    • 基金项目: 中央高校基本科研业务费专项资金(批准号:KYZ200916)和南京农业大学青年科创基金资助的课题.
    [1]

    Watts D J,Strogatz S H 1998 Nature 393 440

    [2]

    Albert R,Jeong H,Barabási A L 1999 Nature 401 130

    [3]

    Wang G Z,Cao Y J,Bao Z J,Han Z X 2009 Acta Phys. Sin. 58 3597 (in Chinese) [王光增、曹一家、包哲静、韩祯祥 2009 58 3597]

    [4]

    Zhang L,Liu Y 2008 Acta Phys. Sin. 57 5419 (in Chinese) [张 立、刘 云 2008 57 5419]

    [5]

    Newman M E J 2002 Proc. Natl. Acad. Sci. U.S.A. 99 7821

    [6]

    Newman M E J,Barabási A L,Watts D J 2006 The Structure and Dynamics of Networks (Princeton:Princeton University Press)

    [7]

    Shen Y,Pei W J,Wang K,Li T,Wang S P 2008 Physica A 387 6663

    [8]

    Danon L,Duch J,Guilera A D,Arenas A 2005 J. Stat. Mech. p09008

    [9]

    Holme P,Huss M,Jeong H 2003 Bioinformatics 19 532

    [10]

    Guimerà R,Amaral L A N 2005 Nature 433 895

    [11]

    Colizza V,Barrat A M,Vespignani A 2006 Proc. Natl. Acad. Sci. U.S.A. 103 2015

    [12]

    Ni S J,Weng W G,Fan W C 2009 Acta Phys. Sin. 58 3707 (in Chinese) [倪顺江、翁文国、范维澄 2009 58 3707]

    [13]

    Ma X J,Wang Y,Zheng Z G 2009 Acta Phys. Sin. 58 4426 (in Chinese) [马晓娟、王 延、郑志刚 2009 58 4426]

    [14]

    Lü L,Zhang C 2009 Acta Phys. Sin. 58 1462 (in Chinese) [吕 翎、张 超 2009 58 1462]

    [15]

    Song Q S,Feng Z R,Li R H 2009 Acta Phys. Sin. 58 5057 (in Chinese) [宋青松、冯祖仁、李人厚 2009 58 5057]

    [16]

    Shen Y,Pei W J,Wang K,Wang S P 2009 Chin. Phys. B 18 3783

    [17]

    Zhang Z,Fu Z Q,Yan G 2009 Chin. Phys. B 18 2209

    [18]

    Wang J W,Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese) [王建伟、荣莉莉 2009 58 3714]

    [19]

    Ouyang M,Fei Q,Yu M H 2008 Acta Phys. Sin. 57 6763 (in Chinese) [欧阳敏、费 奇、余明晖 2008 57 6763]

    [20]

    Xu Q X,Xu X J 2009 Chin. Phys. B 18 933

    [21]

    Nelson A A 2007 Phys. Rev. E 76 036101

    [22]

    Newman M E J 2004 Phys. Rev. E 70 056131

    [23]

    Duch J,Arenas A 2005 Phys. Rev. E 72 027104

    [24]

    Fan Y,Li M,Zhang P,Wu J S,Di Z R 2006 Physica A 370 869

    [25]

    Newman M E J,Girvan M 2004 Phys. Rev. E 69 026113

    [26]

    Lancichinetti A,Fortunato S,2009 Phys. Rev. E 80 056117

    [27]

    Newman M E J 2006 Phys. Rev. E 74 036104

    [28]

    Roger G,Marta S P,Luís A,Nunes A 2004 Phys. Rev. E 70 025101

    [29]

    Newman M E J 2004 Phys. Rev. E 69 066133

    [30]

    Frank K A 1996 Soc. Networks 18 93

    [31]

    Danon L,Díaz-Guilera A,Duch J,Arenas A 2006 J. Stat. Mech. p11010

    [32]

    Newman M E J 2006 Proc. Natl. Acad. Sci. U.S.A. 103 8577

  • [1]

    Watts D J,Strogatz S H 1998 Nature 393 440

    [2]

    Albert R,Jeong H,Barabási A L 1999 Nature 401 130

    [3]

    Wang G Z,Cao Y J,Bao Z J,Han Z X 2009 Acta Phys. Sin. 58 3597 (in Chinese) [王光增、曹一家、包哲静、韩祯祥 2009 58 3597]

    [4]

    Zhang L,Liu Y 2008 Acta Phys. Sin. 57 5419 (in Chinese) [张 立、刘 云 2008 57 5419]

    [5]

    Newman M E J 2002 Proc. Natl. Acad. Sci. U.S.A. 99 7821

    [6]

    Newman M E J,Barabási A L,Watts D J 2006 The Structure and Dynamics of Networks (Princeton:Princeton University Press)

    [7]

    Shen Y,Pei W J,Wang K,Li T,Wang S P 2008 Physica A 387 6663

    [8]

    Danon L,Duch J,Guilera A D,Arenas A 2005 J. Stat. Mech. p09008

    [9]

    Holme P,Huss M,Jeong H 2003 Bioinformatics 19 532

    [10]

    Guimerà R,Amaral L A N 2005 Nature 433 895

    [11]

    Colizza V,Barrat A M,Vespignani A 2006 Proc. Natl. Acad. Sci. U.S.A. 103 2015

    [12]

    Ni S J,Weng W G,Fan W C 2009 Acta Phys. Sin. 58 3707 (in Chinese) [倪顺江、翁文国、范维澄 2009 58 3707]

    [13]

    Ma X J,Wang Y,Zheng Z G 2009 Acta Phys. Sin. 58 4426 (in Chinese) [马晓娟、王 延、郑志刚 2009 58 4426]

    [14]

    Lü L,Zhang C 2009 Acta Phys. Sin. 58 1462 (in Chinese) [吕 翎、张 超 2009 58 1462]

    [15]

    Song Q S,Feng Z R,Li R H 2009 Acta Phys. Sin. 58 5057 (in Chinese) [宋青松、冯祖仁、李人厚 2009 58 5057]

    [16]

    Shen Y,Pei W J,Wang K,Wang S P 2009 Chin. Phys. B 18 3783

    [17]

    Zhang Z,Fu Z Q,Yan G 2009 Chin. Phys. B 18 2209

    [18]

    Wang J W,Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese) [王建伟、荣莉莉 2009 58 3714]

    [19]

    Ouyang M,Fei Q,Yu M H 2008 Acta Phys. Sin. 57 6763 (in Chinese) [欧阳敏、费 奇、余明晖 2008 57 6763]

    [20]

    Xu Q X,Xu X J 2009 Chin. Phys. B 18 933

    [21]

    Nelson A A 2007 Phys. Rev. E 76 036101

    [22]

    Newman M E J 2004 Phys. Rev. E 70 056131

    [23]

    Duch J,Arenas A 2005 Phys. Rev. E 72 027104

    [24]

    Fan Y,Li M,Zhang P,Wu J S,Di Z R 2006 Physica A 370 869

    [25]

    Newman M E J,Girvan M 2004 Phys. Rev. E 69 026113

    [26]

    Lancichinetti A,Fortunato S,2009 Phys. Rev. E 80 056117

    [27]

    Newman M E J 2006 Phys. Rev. E 74 036104

    [28]

    Roger G,Marta S P,Luís A,Nunes A 2004 Phys. Rev. E 70 025101

    [29]

    Newman M E J 2004 Phys. Rev. E 69 066133

    [30]

    Frank K A 1996 Soc. Networks 18 93

    [31]

    Danon L,Díaz-Guilera A,Duch J,Arenas A 2006 J. Stat. Mech. p11010

    [32]

    Newman M E J 2006 Proc. Natl. Acad. Sci. U.S.A. 103 8577

  • [1] 沈力峰, 王建波, 杜占玮, 许小可. 基于社团结构和活跃性驱动的双层网络传播动力学.  , 2023, 72(6): 068701. doi: 10.7498/aps.72.20222206
    [2] 罗仕龙, 龚凯, 唐朝生, 周靖. 加权网络中基于冗余边过滤的k-核分解排序算法.  , 2017, 66(18): 188902. doi: 10.7498/aps.66.188902
    [3] 苏晓萍, 宋玉蓉. 利用邻域“结构洞”寻找社会网络中最具影响力节点.  , 2015, 64(2): 020101. doi: 10.7498/aps.64.020101
    [4] 王兴元, 赵仲祥. 基于节点间依赖度的社团结构划分方法.  , 2014, 63(17): 178901. doi: 10.7498/aps.63.178901
    [5] 丁益民, 丁卓, 杨昌平. 基于社团结构的城市地铁网络模型研究.  , 2013, 62(9): 098901. doi: 10.7498/aps.62.098901
    [6] 王丹, 郝彬彬. 一类高聚类系数的加权无标度网络及其同步能力分析.  , 2013, 62(22): 220506. doi: 10.7498/aps.62.220506
    [7] 戴存礼, 吴威, 赵艳艳, 姚雪霞, 赵志刚. 权重分布对加权局域世界网络动力学同步的影响.  , 2013, 62(10): 108903. doi: 10.7498/aps.62.108903
    [8] 吕天阳, 谢文艳, 郑纬民, 朴秀峰. 加权复杂网络社团的评价指标及其发现算法分析.  , 2012, 61(21): 210511. doi: 10.7498/aps.61.210511
    [9] 王丹, 金小峥. 可调聚类系数加权无标度网络建模及其拥塞问题研究.  , 2012, 61(22): 228901. doi: 10.7498/aps.61.228901
    [10] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析.  , 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [11] 张聪, 沈惠璋, 李峰, 杨何群. 复杂网络中社团结构发现的多分辨率密度模块度.  , 2012, 61(14): 148902. doi: 10.7498/aps.61.148902
    [12] 袁超, 柴毅. 基于簇相似度的网络社团结构探测算法.  , 2012, 61(21): 218901. doi: 10.7498/aps.61.218901
    [13] 吕翎, 孟乐, 郭丽, 邹家蕊, 杨明. 激光时空混沌模型的加权网络投影同步.  , 2011, 60(3): 030506. doi: 10.7498/aps.60.030506
    [14] 邵斐, 蒋国平. 基于社团结构的负载传输优化策略研究.  , 2011, 60(7): 078902. doi: 10.7498/aps.60.078902
    [15] 田柳, 狄增如, 姚虹. 权重分布对加权网络效率的影响.  , 2011, 60(2): 028901. doi: 10.7498/aps.60.028901
    [16] 王高峡, 沈轶. 网络的模块矩阵及其社团结构指标.  , 2010, 59(2): 842-850. doi: 10.7498/aps.59.842
    [17] 李岩, 吕翎, 栾玲. 环形加权网络的时空混沌延迟同步.  , 2009, 58(7): 4463-4468. doi: 10.7498/aps.58.4463
    [18] 高忠科, 金宁德. 两相流流型复杂网络社团结构及其统计特性.  , 2008, 57(11): 6909-6920. doi: 10.7498/aps.57.6909
    [19] 潘灶烽, 汪小帆. 一种可大范围调节聚类系数的加权无标度网络模型.  , 2006, 55(8): 4058-4064. doi: 10.7498/aps.55.4058
    [20] 钟锡华. 自相似结构的谱函数.  , 1990, 39(6): 59-66. doi: 10.7498/aps.39.59
计量
  • 文章访问数:  8628
  • PDF下载量:  1321
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-17
  • 修回日期:  2010-01-24
  • 刊出日期:  2010-09-15

/

返回文章
返回
Baidu
map