-
In this paper, for the ITO-SiOx (In, Sn)/n-Si photovoltaic device, the molecular coacervate of In–O–Si bonding and two kinds of quantum states for indium-grafted in amorphous silicon oxide a-SiOx (In, Sn) layers are predicted by molecular dynamics simulation and density function theory calculation, respectively. The results show that the SiOx layers are the result of the inter-diffusion of the In, Sn, O, Si element. Moreover, In–O–Si and Sn–O–Si bonding hybird structures existing in the SiOx layers are found. From the result of formation energy calculations, we show that the formation energies of such an In–O–Si configuration are 5.38 eV for Si-rich condition and 4.27 eV for In-rich condition respectively, which are both lower than the energy (10 eV) provided in our experiment environment. It means that In–O–Si configuration is energetically favorable. By the energy band calculations, In and Sn doping induced gap states (Ev+4.60 eV for In, Ev+4.0 eV for Sn) within a-SiO2 band gap are found, which are different from the results of doping of B, Al, Ga or other group-Ⅲ and V elements. The most interesting phenomena are that there is either a transition level at Ev+0.3 eV for p-type conductive conversion or an extra level at Ev+4.60 eV induced by In doping within the dielectric amorphous oxide (a-SiOx) model. These gap states (GSⅡ and GSIS) could lower the tunneling barrier height and increase the probability of tunneling, facilitate the transport of photo-generated holes, strengthen the short circuit current, and/or create negatively charged defects to repel electrons, thereby suppressing carrier recombination at the p-type inversion layer and promoting the establishment of the effective built-in-potential, increasing the open-circuit voltage and fill factor. Therefore, the multi-functions such as good passivation, built-in field, inversion layer and carriers tunneling are integrated into the a-SiOx (In, Sn) materials, which may be a good candidate for the selective contact of silicon-based high efficient heterojunction solar cells in the future. This work can help us to promote the explanations of the electronic structure and hole tunneling transport in ITO-SiOx/n-Si photovoltaic device and predict that In–O–Si compound could be as an excellent passivation tunneling selective material.
-
Keywords:
- amorphous SiOx layer /
- density functional theory /
- heterojunction solar cells /
- quantum tunneling
[1] Heng J B, Yu C T, Xu Z, Fu J M 2012 US Patent 0272012 A1
[2] Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 131 46
[3] Liu Y Y, Stradins P, Deng H X, Luo J W, Wei S H 2016 Appl. Phys. Lett. 108 022101
[4] Ma Z Q, Du H W, Yang J, Gao M, Chen S M, Wan Y Z 2016 Mater. Today:Proceedings 3 454
[5] Du H W, Yang J, Li Y H, Xu F, Xu J, Ma Z Q 2015 Appl. Phys. Lett. 106 093508
[6] Farnesi C M, Reiner J C, Sennhauser U, Schlapbach L 2007 Phys. Rev. B 76 125205
[7] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[8] Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15
[9] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[10] Tian F H, Liu C B 2006 J. Phys. Chem. B 110 17866
[11] Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210(in Chinese)[赵佰强, 张耘, 邱晓燕, 王学维2015 64 124210]
[12] Bénédicte D, Stefaan D W, Antoine D, Zachary C H, Christophe B 2012 Appl. Phys. Lett. 101 171604
[13] Løvvik O M, Diplas S, Romanyuk A, Ulyashin A 2014 J. Appl. Phys. 115 083705
[14] Mryasov O N, Freeman A 2001 J. Phys. Rev. B 64 233111
[15] Lee H M, Kang S B, Chung K B, Kim H K 2013 Appl. Phys. Lett. 102 021914
[16] Park J W, Hyeon S S, Lee H M, Kim H J, Kim H K, Lee H 2015 J. Appl. Phys. 117 155305
[17] Johannes S, Alfredo P, Roberto C 1995 Phys. Rev. B 52 12690
[18] Han D, West D, Li X B, Xie S Y, Sun H B, Zhang S B 2010 Phys. Rev. B 82 155132
[19] Reid A F, Li C, Ringwood A E 1977 J. Solid. State. Chem. 20 219
[20] Dabney W S, Antolino N E, Luisi B S, Richard A P, Edwards D D 2002 Thin Solid Films 411 192
[21] Karazhanov S Z, Ravindran P, Grossner U 2011 Thin Solid Films 519 6561
[22] Gao M, Du H W, Yang J, Chen S M, Xu J, Ma Z Q 2015 Chin. Sci. Bull. 60 1841(in Chinese)[高明, 杜汇伟, 杨洁, 陈姝敏, 徐静, 马忠权2015科学通报 60 1841]
-
[1] Heng J B, Yu C T, Xu Z, Fu J M 2012 US Patent 0272012 A1
[2] Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 131 46
[3] Liu Y Y, Stradins P, Deng H X, Luo J W, Wei S H 2016 Appl. Phys. Lett. 108 022101
[4] Ma Z Q, Du H W, Yang J, Gao M, Chen S M, Wan Y Z 2016 Mater. Today:Proceedings 3 454
[5] Du H W, Yang J, Li Y H, Xu F, Xu J, Ma Z Q 2015 Appl. Phys. Lett. 106 093508
[6] Farnesi C M, Reiner J C, Sennhauser U, Schlapbach L 2007 Phys. Rev. B 76 125205
[7] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[8] Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15
[9] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[10] Tian F H, Liu C B 2006 J. Phys. Chem. B 110 17866
[11] Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210(in Chinese)[赵佰强, 张耘, 邱晓燕, 王学维2015 64 124210]
[12] Bénédicte D, Stefaan D W, Antoine D, Zachary C H, Christophe B 2012 Appl. Phys. Lett. 101 171604
[13] Løvvik O M, Diplas S, Romanyuk A, Ulyashin A 2014 J. Appl. Phys. 115 083705
[14] Mryasov O N, Freeman A 2001 J. Phys. Rev. B 64 233111
[15] Lee H M, Kang S B, Chung K B, Kim H K 2013 Appl. Phys. Lett. 102 021914
[16] Park J W, Hyeon S S, Lee H M, Kim H J, Kim H K, Lee H 2015 J. Appl. Phys. 117 155305
[17] Johannes S, Alfredo P, Roberto C 1995 Phys. Rev. B 52 12690
[18] Han D, West D, Li X B, Xie S Y, Sun H B, Zhang S B 2010 Phys. Rev. B 82 155132
[19] Reid A F, Li C, Ringwood A E 1977 J. Solid. State. Chem. 20 219
[20] Dabney W S, Antolino N E, Luisi B S, Richard A P, Edwards D D 2002 Thin Solid Films 411 192
[21] Karazhanov S Z, Ravindran P, Grossner U 2011 Thin Solid Films 519 6561
[22] Gao M, Du H W, Yang J, Chen S M, Xu J, Ma Z Q 2015 Chin. Sci. Bull. 60 1841(in Chinese)[高明, 杜汇伟, 杨洁, 陈姝敏, 徐静, 马忠权2015科学通报 60 1841]
Catalog
Metrics
- Abstract views: 5628
- PDF Downloads: 182
- Cited By: 0