-
采用密度泛函理论方法研究了三种imogolite类(未取代、NH2取代和F取代)纳米管的直径单分散性及表面电荷的分布情况, 并从键长方面定性地解释了直径单分散性的原因. 我们给出了IMO, IMO_NH2和IMO_F的应变能曲线, 结果表明三种纳米管结构的最稳定管径值按照IMO IMO_NH2 IMO_F的顺序递增, 而imogolite类纳米管直径单分散性是由于管径的增大导致内部SiO, AlO键与外部Al-OH键键长变化趋势相反造成的, 总之是内部SiO, AlO 键和外部AlOH键相互作用的结果. 此外, 对三种稳定的纳米管结构做了Mulliken布局分析, 并总结了纳米管直径变化对表面电荷的影响. 结果表明正电荷主要积聚在外表面, 而内表面则感应出负电荷, 同时随着纳米管直径的增大表面电荷逐渐增加, 揭示了表面电荷与管径大小的关系. 研究表明, 可以通过改变imogolite内表面不同的官能化取代来控制纳米管直径, 进而调节表面电荷的分布情况, 这在imogolite类材料的分子设计及应用方面有着重要意义.
-
关键词:
- imogolite /
- 密度泛函理论 /
- 单分散性 /
- Mulliken电荷
The diameter monodispersity and the surface charge distribution of three imogolite-like nanotubes (not substituted (IMO), substituted by NH2 (IMO-NH2), substituted by F (IMO-F) are investigated using self-consistent periodic density functional theory, and the phenomenon of the monodispersity is explained qualitatively in terms of bond length. We assume that the axial length of the nanotube is constant and confirm it; the energetic minimum axial lengths of the three nanotubes increase in the sequence IMO_NH2 IMO IMO_F, and are respectively 8.61, 8.62 and 8.66 . Then the energies for different nanotubes and lamellar structures are calculated. A series of strain energy curves of IMO, IMO_NH2 and IMO_F are plotted based on calculations, and the results show that the energetic minimum diameters of these three nanotubes increase in the sequence of IMO IMO_NH2 IMO_F, and are respectively N= 9, 10 and 11. In order to explain the diameter monodispersity, we have calculated the bond lengths of SiO, AlO and AlOH three nanotubes and plotted the curves of length against diameter. Results show that the monodispersity can be attributed to the interaction between the energy increase resulting from the stretching of the SiO, AlO bonds in the inner wall, and the energy decreases caused by the shortening of the AlOH bond in the outer wall. In a word, with the increase of tube diameter, the SiO and AlO bonds increase while the AlOH bond decreases monotonically. Additionally, we have also calculated the Mulliken charge distributions of the three nanotubes with different diameter and analysed their surface charges. On this basis, we summarize the effect of diameter on surface charge. Results show that the main positive charges are accumulating on the outer surface while the negative charges are located on the inner region, and the outer surface charge increases gradually with the increase of the diameter of the nanotubes. The study indicates that the internal surface functional group has an effect on the axial length, diameter and surface charge of the imogolite-like nanotubes. We can control the nanotube diameter and surface charge distribution by changing different functional substitutes in the inner surface; it is significant in the molecular design and application of imogolite-like materials.-
Keywords:
- imogolite /
- density functional theory /
- monodispersity /
- Mulliken charge
[1] Sehgal R, Brinker C J, Huling J C 1995 International conference on inorganic membranes Worcester, USA, July 10-14, 1994 p101225
[2] Bottero I, Bonelli B, Ashbrook S E, Wright P A, Zhou W Z, Tagliabue M, Armandi M, Garrone E 2011 Phys. Chem. Chem. Phys. 13 744
[3] Zang J, Chempath S, Konduri S, Nair S, Sholl D S 2010 J. Phys. Chem. Lett. 1 1235
[4] Kang D Y, Brunelli N A, Yucelen G I, Venkatasubramanian A, Zang J, Leisen J, Hesketh P J, Jones C W 2014 Nat. Commun. 5 163
[5] Zanzottera C, Armandi M, Esposito S, Garrone E, Bonelli B 2012 J. Phys. Chem. C 116 20417
[6] Nakagaki S, Wypych F 2007 J. Colloid Interface Sci. 315 142
[7] Ohashi F, Tomura S, Akaku K, Hayashi S, Wada S I 2004 J. Mater. Sci. 39 1799
[8] Farmer V C, Adams M J, Fraser A R, Palmieri F 1983 Clay Miner. 18 459
[9] Su C, Harsh J B 1993 Clays Clay Miner. 41 461
[10] Cradwick P D G, Farmer V C, Russell J D, Masson C R, Wada K, Yoshinaga N 1972 Nature 240 187
[11] Foreign Trend 2006 Modern Chemical Industry 26 71 (in Chinese) [国外动态 2006 现代化工 26 71]
[12] Konduri S, Tong H M, Chempath S, Nair S 2008 J. Phys. Chem. C 112 15367
[13] Zang J, Konduri S, Nair S, Sholl D S 2009 Acs. Nano 3 1548
[14] Dvoyashkin M, Zang J, Yucelen G I, Katihar A, Nair S, Sholl D S, Bowers C R, Vasenkov S 2012 J. Phys. Chem. C 116 21350
[15] Zhang T L, Wang Z L 1989 Acta Petrol. Mineral. 8 347 (in Chinese) [张天乐, 王宗良 1989 岩石矿物学杂志 8 347]
[16] Wang H L, Li J B, Huang Y, Zou A H 1997 Mater. Rev. 11 34 (in Chinese) [王厚亮, 李建保, 黄勇, 邹爱红 1997 材料导报 11 34]
[17] Yang H X, Su Z H 2007 Chin. Sci. Bull. 52 1719 (in Chinese) [杨慧娴, 苏朝晖 2007 科学通报 52 1719]
[18] Ma Z, Zhu W J, Ding T, Qi X Z 2015 J. Chin. Ceram. Soc. 34 1282 (in Chinese) [马智, 朱伟佳, 刘焕焕, 丁彤, 齐晓周 2015 硅酸盐通报 34 1282]
[19] Loureco M P, Guimares L, Da Silva M C, de Oliveira C, Heine T, Duarte H A 2014 J. Phys. Chem. C 118 5945
[20] Park G, Lee H, Lee S U, Sohn D 2014 Mol. Cryst. Liq. Cryst. 599 68
[21] Gonzlez R I, Ramez R, Rogan J, Valdivia J A, Munoz F, Valencia F, Ramirez M, Kiwi M 2014 J. Phys. Chem. C 118 28227
[22] da Silva M C, Dos Santos E C, Loureco M P, Gouvea M P, Duarte H A 2015 Front. Mater. 2 16
[23] Poli E, Elliott J D, Hine N D M, Mostofi A A, Teobaldi G 2015 Mater Res. Innov. 19 S272
[24] Bursill L A, Peng J L, Bourgeois L N 2000 Phil. Mag. A 80 105
[25] Mukherjee S, Bartlow V M, Nair S 2005 Chem. Mater. 17 4900
[26] Koenderink G H, Kluijtmans S G, Philipse A P 1999 J. Colloid Interface Sci. 216 429
[27] Tamura K, Kawamura K 2002 J. Phys. Chem. B 106 271
[28] Lee S U, Choi Y C, Youm S G, Sohn D 2011 J. Phys. Chem. C 115 5226
[29] Demichelis R, Nol Y, D'Arco P, Maschio L, Orlando R, Dovesi R 2010 J. Mater. Chem. 20 10417
[30] Guimares L, Enyashin A N, Frenzel J, Heine T, Duarte H A, Seifert G 2007 Acs. Nano 1 362
[31] Konduri S, Mukherjee S, Nair S 2006 Phys. Rev. B 74 033401
[32] Zhao M W, Xia Y Y, Mei L M 2009 J. Phys. Chem. C 113 14834
[33] Alvarez-Ramrez F 2007 Phys. Rev. B 76 125421
[34] Guimares L, Pinto Y N, Lourenco M P, Duarte H A 2013 Phys. Chem. Chem. Phys. 15 4303
[35] Cygan R T, Liang J J, Kalinichev A G 2004 J. Phys. Chem. B 108 1255
[36] Li L J 2008 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [李丽娟 2008 博士学位论文 (济南: 山东大学)]
[37] Schrder K P, Sauer J, Leslie M, Richard C, Catlow A 1992 Chem. Phys. Lett. 188 320
[38] Sainz-Diaz C I, Hernandez-Laguna A, Dove M T 2001 Phys. Chem. Miner. 28 130
[39] Gustafsson J P 2001 Clays Clay Miner. 49 73
[40] Li L J, Xia Y Y, Zhao M W, Song C, Li J L, Liu X D 2008 Nanotechnology 19 175702
-
[1] Sehgal R, Brinker C J, Huling J C 1995 International conference on inorganic membranes Worcester, USA, July 10-14, 1994 p101225
[2] Bottero I, Bonelli B, Ashbrook S E, Wright P A, Zhou W Z, Tagliabue M, Armandi M, Garrone E 2011 Phys. Chem. Chem. Phys. 13 744
[3] Zang J, Chempath S, Konduri S, Nair S, Sholl D S 2010 J. Phys. Chem. Lett. 1 1235
[4] Kang D Y, Brunelli N A, Yucelen G I, Venkatasubramanian A, Zang J, Leisen J, Hesketh P J, Jones C W 2014 Nat. Commun. 5 163
[5] Zanzottera C, Armandi M, Esposito S, Garrone E, Bonelli B 2012 J. Phys. Chem. C 116 20417
[6] Nakagaki S, Wypych F 2007 J. Colloid Interface Sci. 315 142
[7] Ohashi F, Tomura S, Akaku K, Hayashi S, Wada S I 2004 J. Mater. Sci. 39 1799
[8] Farmer V C, Adams M J, Fraser A R, Palmieri F 1983 Clay Miner. 18 459
[9] Su C, Harsh J B 1993 Clays Clay Miner. 41 461
[10] Cradwick P D G, Farmer V C, Russell J D, Masson C R, Wada K, Yoshinaga N 1972 Nature 240 187
[11] Foreign Trend 2006 Modern Chemical Industry 26 71 (in Chinese) [国外动态 2006 现代化工 26 71]
[12] Konduri S, Tong H M, Chempath S, Nair S 2008 J. Phys. Chem. C 112 15367
[13] Zang J, Konduri S, Nair S, Sholl D S 2009 Acs. Nano 3 1548
[14] Dvoyashkin M, Zang J, Yucelen G I, Katihar A, Nair S, Sholl D S, Bowers C R, Vasenkov S 2012 J. Phys. Chem. C 116 21350
[15] Zhang T L, Wang Z L 1989 Acta Petrol. Mineral. 8 347 (in Chinese) [张天乐, 王宗良 1989 岩石矿物学杂志 8 347]
[16] Wang H L, Li J B, Huang Y, Zou A H 1997 Mater. Rev. 11 34 (in Chinese) [王厚亮, 李建保, 黄勇, 邹爱红 1997 材料导报 11 34]
[17] Yang H X, Su Z H 2007 Chin. Sci. Bull. 52 1719 (in Chinese) [杨慧娴, 苏朝晖 2007 科学通报 52 1719]
[18] Ma Z, Zhu W J, Ding T, Qi X Z 2015 J. Chin. Ceram. Soc. 34 1282 (in Chinese) [马智, 朱伟佳, 刘焕焕, 丁彤, 齐晓周 2015 硅酸盐通报 34 1282]
[19] Loureco M P, Guimares L, Da Silva M C, de Oliveira C, Heine T, Duarte H A 2014 J. Phys. Chem. C 118 5945
[20] Park G, Lee H, Lee S U, Sohn D 2014 Mol. Cryst. Liq. Cryst. 599 68
[21] Gonzlez R I, Ramez R, Rogan J, Valdivia J A, Munoz F, Valencia F, Ramirez M, Kiwi M 2014 J. Phys. Chem. C 118 28227
[22] da Silva M C, Dos Santos E C, Loureco M P, Gouvea M P, Duarte H A 2015 Front. Mater. 2 16
[23] Poli E, Elliott J D, Hine N D M, Mostofi A A, Teobaldi G 2015 Mater Res. Innov. 19 S272
[24] Bursill L A, Peng J L, Bourgeois L N 2000 Phil. Mag. A 80 105
[25] Mukherjee S, Bartlow V M, Nair S 2005 Chem. Mater. 17 4900
[26] Koenderink G H, Kluijtmans S G, Philipse A P 1999 J. Colloid Interface Sci. 216 429
[27] Tamura K, Kawamura K 2002 J. Phys. Chem. B 106 271
[28] Lee S U, Choi Y C, Youm S G, Sohn D 2011 J. Phys. Chem. C 115 5226
[29] Demichelis R, Nol Y, D'Arco P, Maschio L, Orlando R, Dovesi R 2010 J. Mater. Chem. 20 10417
[30] Guimares L, Enyashin A N, Frenzel J, Heine T, Duarte H A, Seifert G 2007 Acs. Nano 1 362
[31] Konduri S, Mukherjee S, Nair S 2006 Phys. Rev. B 74 033401
[32] Zhao M W, Xia Y Y, Mei L M 2009 J. Phys. Chem. C 113 14834
[33] Alvarez-Ramrez F 2007 Phys. Rev. B 76 125421
[34] Guimares L, Pinto Y N, Lourenco M P, Duarte H A 2013 Phys. Chem. Chem. Phys. 15 4303
[35] Cygan R T, Liang J J, Kalinichev A G 2004 J. Phys. Chem. B 108 1255
[36] Li L J 2008 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [李丽娟 2008 博士学位论文 (济南: 山东大学)]
[37] Schrder K P, Sauer J, Leslie M, Richard C, Catlow A 1992 Chem. Phys. Lett. 188 320
[38] Sainz-Diaz C I, Hernandez-Laguna A, Dove M T 2001 Phys. Chem. Miner. 28 130
[39] Gustafsson J P 2001 Clays Clay Miner. 49 73
[40] Li L J, Xia Y Y, Zhao M W, Song C, Li J L, Liu X D 2008 Nanotechnology 19 175702
计量
- 文章访问数: 6640
- PDF下载量: 122
- 被引次数: 0