搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究

杨振清 白晓慧 邵长金

引用本文:
Citation:

(TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究

杨振清, 白晓慧, 邵长金

Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds

Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin
PDF
导出引用
  • 本文采用第一性原理中基于密度泛函理论(DFT)的广义梯度近似(GGA)方法, 设计了一种新的(TiO2)12 量子环结构, 研究了它的几何结构、平均结合能及电子云分布等属性. 在此新型结构的基础上, 分别采用过渡金属化合物MoS2, MoSe2, MoTe2, WS2, WSe2和WTe2进行掺杂, 并分析了掺杂后体系的几何结构及电子属性(如平均结合能、能级结构、HOMO-LUMO轨道电子云密度分布和电子态密度等). 计算结果表明: (TiO2)12量子环直径为1.059 nm, 呈中心对称分布, 且所有原子组成一个二维平面结构, 使其几何结构比较稳定, 另外该量子环HOMO-LUMO轨道电子云分布均匀, 且能隙为3.17 eV, 与半导体材料TiO2晶体的能隙的实验值(3.2 eV)非常接近. 掺杂后量子环的能隙均大幅减小, 其中WTe2的掺杂结果能隙最小, 仅为0.61 eV, MoTe2的掺杂结果能隙最大, 为1.16 eV, 也比掺杂前减小约2.0 eV. 其他掺杂结果的能隙都在1 eV左右, 变化不大. 这个能隙的TiO2可以利用大部分的太阳光能, 使TiO2具有更为广泛的应用.
    In this paper, we have designed a new (TiO2)12 quantum ring structure and studied its geometry, average binding energy, and the electron density distributions using the generalized gradient approximation (GGA), which is based on the density functional theory (DFT) with the first-principles calculations. This new quantum ring structure is doped with transition metal compounds MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2 respectively, to modify its properties. Thus we can calculate and analyze their geometrics and electronic properties (such as average binding energies, energy levels, electronic density of states and the HOMO-LUMO electron density distributionsatc). We find that the (TiO2)12 quantum ring with a diameter of 1.059 nm seems to be of a two-dimensional structure with a center symmety which ensurs it a stable structure. In addition, the HOMO-LUMO orbital electron density in the quantum ring distributes evenly, and its energy gap is 3.17 eV which is very close to the experimental value of TiO2 semiconductor materials (3.2 eV). The energy gaps decrease substantially after introducing the transition metal compounds into the quantum ring. Among these results, the ring doped with WTe2 has the smallest energy gap (0.61 eV), and that with MoTe2 has the biggest energy gap (1.16 eV), but it is still smaller by about 2 eV than that of the (TiO2)12 quantum ring. Furthermore, other doping results have energy gap variation around 1 eV. The TiO2 clusters with this energy gap could make use most of the solar energy and so expand applications of TiO2.
    • 基金项目: 中国石油大学(北京)基本科研基金资助(批准号: KYJJ2012-06-26)和教育部科学技术重点项目(批准号: 108023)资助的课题.
    • Funds: Project supported by the Basic Scientific Research Fund of China University of Petroleum (Beijing) (Grant No. KYJJ2012-06-26), and the Key Project of Science and Technology of Ministry of Education (Grant No. 108023).
    [1]

    Yin W J, Wei S H, Al-Jassim M M, Yan Y F 2011 Phys. Rev. Lett. 106 066801

    [2]

    Xu L, Tang C Q, Huang Z B 2010 Acta Phys.-Chim. Sin. 26 1401 (in Chinese) [徐凌, 唐超群, 黄宗斌 2010 物理化学学报 26 1401]

    [3]

    Zheng W W, Yang Z Q, Shao C J, Lu G W 2013 J. Synth. Cryst. 42 119 (in Chinese) [郑文文, 杨振清, 邵长金, 卢贵武 2013 人工晶体学报 42 119]

    [4]

    Wu G H, Zheng S K, Liu L, Jia C J 2012 Acta Phys. Sin. 61 223101 (in Chinese) [吴国浩, 郑树凯, 刘磊, 贾长江 2012 61 223101]

    [5]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [6]

    Sun H W, Zhang X J, Zhang Z Y, Chen Y S, Crittenden J C 2009 Environ. Pollut. 157 1165

    [7]

    Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243

    [8]

    Yu J X, Fu M, Ji G F, Chen X R 2009 Chin. Phys. B 18 269

    [9]

    Chen F, Zou W W, Qu W W, Zhang J L 2009 Catal. Commun. 10 1510

    [10]

    Zhai H J, Wang L S 2007 J. Am. Chem. Soc. 129 3022

    [11]

    Yang K S 2010 Ph. D. Dissertation (Shandong: Shandong University) (in Chinese) [杨可松 2010 博士学位论文(山东: 山东大学)]

    [12]

    Chen J, Yan F N, Liang L P, Liu T Y, Geng T 2011 J. Synth. Cryst. 40 758 (in Chinese) [陈俊, 严非男, 梁丽萍, 刘廷禹, 耿滔 2011 人工晶体学报 40 758]

    [13]

    Zhang D, Sun H, Liu J, Liu C 2008 J. Phys. Chem. C 113 21

    [14]

    Jin S, Shireaishi F 2004 J. Chem. Engineering 97 203

    [15]

    Peng L P, Xia Z C, Yang C Q 2012 Acta Phys. Sin. 61 127104 (in Chinese) [彭丽萍, 夏正才, 杨昌权 2012 61 127104]

    [16]

    Lu N, Quan X, Li J Y, Chen S, Yu H T, Chen G H 2007 J. Phys. Chem. C 111 11836

    [17]

    Park J H, Kim S, Bard A J 2005 Nano Lett. 6 24

    [18]

    Tang X H, Li D Y 2008 J. Phys. Chem. C 112 5405

    [19]

    Vitiello R P, Macak J M, Ghicov A, Tsuchiya H, Dick L F P, Schmuki P 2006 Electrochem. Commun. 8 544

    [20]

    Liu H J, Liu G G, Zhou Q X 2009 J. Solid. State. Chem. 182 3238

    [21]

    Sun L, Li J, Wang C L, Li S F, Chen H B, Lin C J 2009 Sol. Energy Mater. Sol. Cells 93 1875

    [22]

    Xie K P, Sun L, Wang C L, Lai Y K, Wang M Y, Chen H B, Lin C J 2010 Electrochim. Acta 55 7211

    [23]

    Mohapatra S K, Kondamudi N, Banerjee S, Misra M 2008 Langmuir 24 11276

    [24]

    Wang C L, Sun L, Yun H, Li J, Lai Y K, Lin C J 2009 Nanotechnology 20 295601

    [25]

    Hou Y, Li X Y, Zhao Q D, Quan X, Chen G H 2010 Adv. Funct. Mater. 20 2165

    [26]

    Zhu K, Neale N R, Miedaner A, Frank A J 2006 Nano Lett. 7 69

    [27]

    Wang J, Lin Z Q 2009 Chem. Mater. 22 579

    [28]

    Ye M D, Xin X K, Lin C J, Lin Z Q 2011 Nano Lett. 11 3214

    [29]

    Zhang N X, Xu M X, Li X L, Liu Z X, Li S 2008 J. Chin. Ceram. Soc. 36 25 (in Chinese) [张念星, 徐明霞, 李晓雷, 刘祥志, 李顺 2008 硅酸盐学报 36 25]

    [30]

    Yang Z Q, Zheng W W, Shao C J 2014 J. Synth. Cryst. 43 375 (in Chinese) [杨振清, 郑文文, 邵长金 2014 人工晶体学报 43 375]

    [31]

    Zheng W W, Yang Z Q, Shao C J, Lu G W 2013 J. Synth. Cryst. 42 119 (in Chinese) [郑文文, 杨振清, 邵长金, 卢贵武 2013 人工晶体学报 42 119]

    [32]

    Gai Y, Li J, Li S S, Xia J B, Wei S H 2009 Phys. Rev. Lett. 102 036402

    [33]

    Zhang S, Zhang Y, Huang S, Liu H, Wang P, Tian H 2011 J. Mater. Chem. 21 16905

    [34]

    Labat F, Le Bahers T, Ciofini I, Adamo C 2012 J. Adhes. 45 1268

    [35]

    Cao L T 1998 Journal of Neijiang Normal University 13 15 (in Chinese) [曹良腾 1998 内江师专学报 13 15]

    [36]

    Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese) [张学军, 高攀, 柳清菊 2010 59 4930]

  • [1]

    Yin W J, Wei S H, Al-Jassim M M, Yan Y F 2011 Phys. Rev. Lett. 106 066801

    [2]

    Xu L, Tang C Q, Huang Z B 2010 Acta Phys.-Chim. Sin. 26 1401 (in Chinese) [徐凌, 唐超群, 黄宗斌 2010 物理化学学报 26 1401]

    [3]

    Zheng W W, Yang Z Q, Shao C J, Lu G W 2013 J. Synth. Cryst. 42 119 (in Chinese) [郑文文, 杨振清, 邵长金, 卢贵武 2013 人工晶体学报 42 119]

    [4]

    Wu G H, Zheng S K, Liu L, Jia C J 2012 Acta Phys. Sin. 61 223101 (in Chinese) [吴国浩, 郑树凯, 刘磊, 贾长江 2012 61 223101]

    [5]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [6]

    Sun H W, Zhang X J, Zhang Z Y, Chen Y S, Crittenden J C 2009 Environ. Pollut. 157 1165

    [7]

    Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243

    [8]

    Yu J X, Fu M, Ji G F, Chen X R 2009 Chin. Phys. B 18 269

    [9]

    Chen F, Zou W W, Qu W W, Zhang J L 2009 Catal. Commun. 10 1510

    [10]

    Zhai H J, Wang L S 2007 J. Am. Chem. Soc. 129 3022

    [11]

    Yang K S 2010 Ph. D. Dissertation (Shandong: Shandong University) (in Chinese) [杨可松 2010 博士学位论文(山东: 山东大学)]

    [12]

    Chen J, Yan F N, Liang L P, Liu T Y, Geng T 2011 J. Synth. Cryst. 40 758 (in Chinese) [陈俊, 严非男, 梁丽萍, 刘廷禹, 耿滔 2011 人工晶体学报 40 758]

    [13]

    Zhang D, Sun H, Liu J, Liu C 2008 J. Phys. Chem. C 113 21

    [14]

    Jin S, Shireaishi F 2004 J. Chem. Engineering 97 203

    [15]

    Peng L P, Xia Z C, Yang C Q 2012 Acta Phys. Sin. 61 127104 (in Chinese) [彭丽萍, 夏正才, 杨昌权 2012 61 127104]

    [16]

    Lu N, Quan X, Li J Y, Chen S, Yu H T, Chen G H 2007 J. Phys. Chem. C 111 11836

    [17]

    Park J H, Kim S, Bard A J 2005 Nano Lett. 6 24

    [18]

    Tang X H, Li D Y 2008 J. Phys. Chem. C 112 5405

    [19]

    Vitiello R P, Macak J M, Ghicov A, Tsuchiya H, Dick L F P, Schmuki P 2006 Electrochem. Commun. 8 544

    [20]

    Liu H J, Liu G G, Zhou Q X 2009 J. Solid. State. Chem. 182 3238

    [21]

    Sun L, Li J, Wang C L, Li S F, Chen H B, Lin C J 2009 Sol. Energy Mater. Sol. Cells 93 1875

    [22]

    Xie K P, Sun L, Wang C L, Lai Y K, Wang M Y, Chen H B, Lin C J 2010 Electrochim. Acta 55 7211

    [23]

    Mohapatra S K, Kondamudi N, Banerjee S, Misra M 2008 Langmuir 24 11276

    [24]

    Wang C L, Sun L, Yun H, Li J, Lai Y K, Lin C J 2009 Nanotechnology 20 295601

    [25]

    Hou Y, Li X Y, Zhao Q D, Quan X, Chen G H 2010 Adv. Funct. Mater. 20 2165

    [26]

    Zhu K, Neale N R, Miedaner A, Frank A J 2006 Nano Lett. 7 69

    [27]

    Wang J, Lin Z Q 2009 Chem. Mater. 22 579

    [28]

    Ye M D, Xin X K, Lin C J, Lin Z Q 2011 Nano Lett. 11 3214

    [29]

    Zhang N X, Xu M X, Li X L, Liu Z X, Li S 2008 J. Chin. Ceram. Soc. 36 25 (in Chinese) [张念星, 徐明霞, 李晓雷, 刘祥志, 李顺 2008 硅酸盐学报 36 25]

    [30]

    Yang Z Q, Zheng W W, Shao C J 2014 J. Synth. Cryst. 43 375 (in Chinese) [杨振清, 郑文文, 邵长金 2014 人工晶体学报 43 375]

    [31]

    Zheng W W, Yang Z Q, Shao C J, Lu G W 2013 J. Synth. Cryst. 42 119 (in Chinese) [郑文文, 杨振清, 邵长金, 卢贵武 2013 人工晶体学报 42 119]

    [32]

    Gai Y, Li J, Li S S, Xia J B, Wei S H 2009 Phys. Rev. Lett. 102 036402

    [33]

    Zhang S, Zhang Y, Huang S, Liu H, Wang P, Tian H 2011 J. Mater. Chem. 21 16905

    [34]

    Labat F, Le Bahers T, Ciofini I, Adamo C 2012 J. Adhes. 45 1268

    [35]

    Cao L T 1998 Journal of Neijiang Normal University 13 15 (in Chinese) [曹良腾 1998 内江师专学报 13 15]

    [36]

    Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese) [张学军, 高攀, 柳清菊 2010 59 4930]

  • [1] 董肖. P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制.  , 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [2] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究.  , 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [3] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质.  , 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [5] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [6] 李宗宝, 王霞, 樊帅伟. Cu/N表面沉积共掺杂TiO2光催化剂作用机理的理论研究.  , 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [7] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究.  , 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究.  , 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [9] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究.  , 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [10] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究.  , 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [11] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究.  , 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [12] 丁斌刚, 张大立, 鲁定辉. 相对论平均场理论框架下对能的系统研究.  , 2009, 58(9): 6086-6090. doi: 10.7498/aps.58.6086
    [13] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究.  , 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [14] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性.  , 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [15] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究.  , 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [16] 梁拥成, 郭万林, 方 忠. 过渡金属化合物OsB2与OsO2低压缩性的第一性原理计算研究.  , 2007, 56(8): 4847-4855. doi: 10.7498/aps.56.4847
    [17] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [18] 谭明秋, 陶向明, 徐小军, 蔡建秋. 含铀化合物UAl3和USn3电子结构的密度泛函研究.  , 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
    [19] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 樊 荣, 陈仙辉, 曹烈兆. 双能隙超导体MgB2的热导.  , 2003, 52(3): 683-686. doi: 10.7498/aps.52.683
    [20] 张杰, 雒建林, 白海洋, 陈兆甲, 林德华, 车广灿, 任治安, 赵忠贤, 金铎. 常压和高压合成MgB2的低温比热及两个超导能隙研究.  , 2002, 51(2): 342-346. doi: 10.7498/aps.51.342
计量
  • 文章访问数:  6758
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-24
  • 修回日期:  2014-11-19
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map