Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Contributions to Verdet constant of magneto-optical materials

Cai Wei Xing Jun-Hui Yang Zhi-Yong

Citation:

Contributions to Verdet constant of magneto-optical materials

Cai Wei, Xing Jun-Hui, Yang Zhi-Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Verdet constant is one of the key parameters to characterize the material magneto-optical properties, and dependent on wavelength and temperature. In order to thoroughly analyze the influence mechanisms of the incident wavelength and temperature on the Verdet constant and then uncover its essence, both the advantages and disadvantages of the classical electronic dynamics theory and quantum theory are discussed on account of basic theories and test data. However, neither of the two theories can be separately used to fully explain the Verdet constant and the correlative test data. Therefore, based on the essential property of the magneto-optical effect, the interactions between the incident light and magnetic matter in a magnetic field are studied, and then a hypothesis which suggests that the Faraday effect result from the combination of various factors is proposed. Furthermore, a theory of wave-transition contribution to the Verdet constant is deduced by adopting the theory of wave-particle duality. That is, the Faraday effect is caused by two different contributions simultaneously. One is the wave contribution, which is the interaction between the wave aspect of light and the magneto-optical medium, and the other refers to the transition contribution, which comes from the electronic transition. When the light enters into a deflection angle, the wave contribution is positive while the transition contribution is negative. In a diamagnetic material, since the wave contribution is greater than the transition contribution, the diamagnetic Verdet constant is positive while in a paramagnetic material, on the contrary, the transition contribution is much larger than the wave contribution, so the paramagnetic Verdet constant is negative. According to the above-mentioned theory, the diamagnetic Verdet constant model and the paramagnetic Verdet constant model are proposed by combining the two parts together. Taking the typical diamagnetic material ZF1 and the typical paramagnetic terbium gallium garnet for example, the influences of the incident wavelength and the temperature on the Verdet constant are analyzed, and the deduced theory together with the corresponding models is tested and verified by analyzing the relevant parameters and the test data. Accordingly, the research turns out that the theoretical results correspond to the real values, which proves the rationality of the hypothesis and the authenticity of the deduced theory. Compared with the traditional theories, the wave-transition contribution theory and its model are superior in the sense of precisely describing the material Verdet constant.
      Corresponding author: Xing Jun-Hui, 582072026@qq.com
    • Funds: Project supported by the Key Laboratory of Optoelectronic Control Technology and Aviation Science Foundation, China (Grant No. 201551U8008) and the National Natural Science Foundation of China (Grant No. 61505254).
    [1]

    Li C S 2015 Acta Phys. Sin. 64 047801(in Chinese)[李长胜2015 64 047801]

    [2]

    Tian Y, Tan B Z, Yang J, Zhang Y, Gu S H 2015 Chin. Phys. B 24 063302

    [3]

    Zhang F, Tian Y, Yi Z, Gu S H 2016 Chin. Phys. B 25 094206

    [4]

    Yan S L 2015 Acta Phys. Sin. 64 240505(in Chinese)[颜森林2015 64 240505]

    [5]

    Liu G Q, Le Z Q, Shen D F 2001 Magnetooptics (Shanghai:Science and Technology Press) pp30-34(in Chinese)[刘公强, 乐志强, 沈德芳2001磁光学(上海:科学技术出版社)第30–34页]

    [6]

    Li Y S, Liu J, Cao L X, Liu Q Z 2016 Sci. China:Technol. Sci. 59 1899

    [7]

    Liu G Q, Wu B 1988 Acta Opt. Sin. 8 105(in Chinese)[刘公强, 吴蓓1988光学学报 8 105]

    [8]

    Tan C Z, Arndt J 1996 Physica B 233 1

    [9]

    Robet S 1932 Phys. Rev. 41 489

    [10]

    Slezak O, Yasuhara R, Lucianetti A, Mocek T 2015 Opt. Express 23 13641

    [11]

    Xia T, Zhang G Y, Zhang X L, Xue L P 2007 Acta Phys. Sin. 56 1741(in Chinese)[夏天, 张国营, 张学龙, 薛刘萍2007 56 1741]

    [12]

    van Vleck J H, Hebb M H 1934 Phys. Rev. 46 17

    [13]

    Borrelli N F 1964 J. Chem. Phys. 41 3289

    [14]

    Wang Z P, Ouyang C M, Wang X Z 2006 J. Harbin Eng. Univ. 27 782(in Chinese)[王政平, 欧阳春梅, 王晓忠2006哈尔滨工程大学学报 27 782]

    [15]

    Piazza L, Lummen T T, Quiñonez E, Murooka Y, Reed B W, Barwick B, Carbone F 2015 Nat. Commun. 6 6407

    [16]

    Di N, Zhao J L, Jiang Y J, Yang D X, Zhang H, Zhou K S, Han Z H, Chen L F 2006 Acta Photon. Sin. 35 1645(in Chinese)[底楠, 赵建林, 姜亚军, 杨德兴, 张浩, 邹快盛, 韩宗虎, 陈林峰2006光子学报 35 1645]

    [17]

    Slezák O, Yasuhara R, Lucianetti A, Mocek T 2016 Opt. Mater. Express 6 3683

    [18]

    Jiang Y S, Zhou B M, Wang B, Hu L L 2009 Acta Opt. Sin. 29 3157(in Chinese)[蒋亚丝, 周蓓明, 王标, 胡丽丽2009光学学报 29 3157]

    [19]

    Wang S N 2013 M. S. Thesis (Xi'an:Shanxi University of Science and Technology) (in Chinese)[王顺逆2013硕士学位论文(西安:陕西科技大学)]

    [20]

    Yu S Q, Wang F, Huang X J 2010 J. Kashgar Teach. Coll. 31 44(in Chinese)[俞胜清, 王峰, 黄晓俊2010喀什师范学院学报 31 44]

    [21]

    Pu S L, Yang Y H, M J 2003 J. Magn. Mater. Dev. 34 14(in Chinese)[卜胜利, 杨瀛海, 马静2003磁性材料及器件 34 14]

    [22]

    Ma H Y 2010 M. S. Thesis (Changchun:Changchun University of Science and Technology) (in Chinese)[马海云2010硕士学位论文(长春:长春理工大学)]

    [23]

    Schlarb U, Sugg B 2010 Phys. Stat. Sol. 182 K91

    [24]

    Löw U, Zvyagin S, Ozerov M, Schaufuss U, Kataev V, Wolf B, Lthi B 2013 Eur. Phys. J. B 86 1

    [25]

    Chen Z, Hang Y, Wang X, Hong J Q 2016 Solid State Commun. 241 38

    [26]

    Villaverde A B, Donatti D A, Bozinis D G 2001 J. Phys. C:Solid State Phys. 11 L495

    [27]

    Valiev U V, Gruber J B, Burdick G W, Ivanov I A, Fu D J, Pelenovich W O, Juraeva N I 2016 J. Luminescence 176 86

  • [1]

    Li C S 2015 Acta Phys. Sin. 64 047801(in Chinese)[李长胜2015 64 047801]

    [2]

    Tian Y, Tan B Z, Yang J, Zhang Y, Gu S H 2015 Chin. Phys. B 24 063302

    [3]

    Zhang F, Tian Y, Yi Z, Gu S H 2016 Chin. Phys. B 25 094206

    [4]

    Yan S L 2015 Acta Phys. Sin. 64 240505(in Chinese)[颜森林2015 64 240505]

    [5]

    Liu G Q, Le Z Q, Shen D F 2001 Magnetooptics (Shanghai:Science and Technology Press) pp30-34(in Chinese)[刘公强, 乐志强, 沈德芳2001磁光学(上海:科学技术出版社)第30–34页]

    [6]

    Li Y S, Liu J, Cao L X, Liu Q Z 2016 Sci. China:Technol. Sci. 59 1899

    [7]

    Liu G Q, Wu B 1988 Acta Opt. Sin. 8 105(in Chinese)[刘公强, 吴蓓1988光学学报 8 105]

    [8]

    Tan C Z, Arndt J 1996 Physica B 233 1

    [9]

    Robet S 1932 Phys. Rev. 41 489

    [10]

    Slezak O, Yasuhara R, Lucianetti A, Mocek T 2015 Opt. Express 23 13641

    [11]

    Xia T, Zhang G Y, Zhang X L, Xue L P 2007 Acta Phys. Sin. 56 1741(in Chinese)[夏天, 张国营, 张学龙, 薛刘萍2007 56 1741]

    [12]

    van Vleck J H, Hebb M H 1934 Phys. Rev. 46 17

    [13]

    Borrelli N F 1964 J. Chem. Phys. 41 3289

    [14]

    Wang Z P, Ouyang C M, Wang X Z 2006 J. Harbin Eng. Univ. 27 782(in Chinese)[王政平, 欧阳春梅, 王晓忠2006哈尔滨工程大学学报 27 782]

    [15]

    Piazza L, Lummen T T, Quiñonez E, Murooka Y, Reed B W, Barwick B, Carbone F 2015 Nat. Commun. 6 6407

    [16]

    Di N, Zhao J L, Jiang Y J, Yang D X, Zhang H, Zhou K S, Han Z H, Chen L F 2006 Acta Photon. Sin. 35 1645(in Chinese)[底楠, 赵建林, 姜亚军, 杨德兴, 张浩, 邹快盛, 韩宗虎, 陈林峰2006光子学报 35 1645]

    [17]

    Slezák O, Yasuhara R, Lucianetti A, Mocek T 2016 Opt. Mater. Express 6 3683

    [18]

    Jiang Y S, Zhou B M, Wang B, Hu L L 2009 Acta Opt. Sin. 29 3157(in Chinese)[蒋亚丝, 周蓓明, 王标, 胡丽丽2009光学学报 29 3157]

    [19]

    Wang S N 2013 M. S. Thesis (Xi'an:Shanxi University of Science and Technology) (in Chinese)[王顺逆2013硕士学位论文(西安:陕西科技大学)]

    [20]

    Yu S Q, Wang F, Huang X J 2010 J. Kashgar Teach. Coll. 31 44(in Chinese)[俞胜清, 王峰, 黄晓俊2010喀什师范学院学报 31 44]

    [21]

    Pu S L, Yang Y H, M J 2003 J. Magn. Mater. Dev. 34 14(in Chinese)[卜胜利, 杨瀛海, 马静2003磁性材料及器件 34 14]

    [22]

    Ma H Y 2010 M. S. Thesis (Changchun:Changchun University of Science and Technology) (in Chinese)[马海云2010硕士学位论文(长春:长春理工大学)]

    [23]

    Schlarb U, Sugg B 2010 Phys. Stat. Sol. 182 K91

    [24]

    Löw U, Zvyagin S, Ozerov M, Schaufuss U, Kataev V, Wolf B, Lthi B 2013 Eur. Phys. J. B 86 1

    [25]

    Chen Z, Hang Y, Wang X, Hong J Q 2016 Solid State Commun. 241 38

    [26]

    Villaverde A B, Donatti D A, Bozinis D G 2001 J. Phys. C:Solid State Phys. 11 L495

    [27]

    Valiev U V, Gruber J B, Burdick G W, Ivanov I A, Fu D J, Pelenovich W O, Juraeva N I 2016 J. Luminescence 176 86

  • [1] Wu Jing, Pan Chun-Yu. Research on inductive neuron model and its dynamic characteristics. Acta Physica Sinica, 2022, 71(4): 048701. doi: 10.7498/aps.71.20211626
    [2] Research on Inductive Neuron Model and its Dynamic Characteristics. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211626
    [3] Dong Da-Xing, Liu You-Wen, Fu Yang-Yang, Fei Yue. Enhancement of Faraday rotation of black phosphorus by extraordinary optical transmission of the metal grating. Acta Physica Sinica, 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [4] Lü Xin. Coherence and path information. Acta Physica Sinica, 2020, 69(7): 070301. doi: 10.7498/aps.69.20191084
    [5] Cai Wei, Xu You-An, Yang Zhi-Yong. Quantum calculation of the influence of trivalent praseodymium ions doping on the magneto-optical properties of terbium gallium garnet crystal. Acta Physica Sinica, 2019, 68(13): 137801. doi: 10.7498/aps.68.20190576
    [6] Chen Qiu-Cheng. Nonlinear Faraday rotation in electromagnetically induced transparency medium of semiconductor three quantum dots. Acta Physica Sinica, 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [7] Yan Sen-Lin. Control of chaos in a semiconductor laser using the Faraday effect. Acta Physica Sinica, 2015, 64(24): 240505. doi: 10.7498/aps.64.240505
    [8] Dong Li-Juan, Du Gui-Qiang, Yang Cheng-Quan, Shi Yun-Long. Magneto-optical Faraday rotation effect enhancement of a thick metal Ag. Acta Physica Sinica, 2012, 61(16): 164210. doi: 10.7498/aps.61.164210
    [9] Yan Wei, Lu Wen, Shi Jian-Kang, Ren Jian-Qi, Wang Rui. Eliminating the influence of Faraday rotation on passive microwave remote sensing from space. Acta Physica Sinica, 2011, 60(9): 099401. doi: 10.7498/aps.60.099401
    [10] She Yan-Chao, Zhang Wei-Xi, Wang Deng-Long. Nonlinear Faraday rotation in electromagnetically induce transparency medium. Acta Physica Sinica, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [11] Teng Li-Hua, Wang Xia. Effect of carrier recombination on time-resolved Faraday rotation spectroscopy in GaAs quantum wells. Acta Physica Sinica, 2011, 60(5): 057202. doi: 10.7498/aps.60.057202
    [12] Tang Qi, Meng Fan-Yi, Zhang Kuang, Wu Qun, Li Le-Wei. Polarization characteristics of the wave reflection at the interface of vacuum and Faraday chiral medium. Acta Physica Sinica, 2011, 60(1): 014206. doi: 10.7498/aps.60.014206
    [13] Zhou Liang, Zhang Jing-Yi. Tunneling radiation of particles with electrical and magnetic charges. Acta Physica Sinica, 2010, 59(6): 4380-4384. doi: 10.7498/aps.59.4380
    [14] Ma Hai-Qiang, Li Lin-Xia, Wang Su-Mei, Wu Zhang-Bin, Jiao Rong-Zhen. An all-fiber method to measure the wave-particle duality of light. Acta Physica Sinica, 2010, 59(1): 75-79. doi: 10.7498/aps.59.75
    [15] Liu Cheng-Zhou, Zhang Chang-Ping, Wang Zhong-Lin. Charged particle tunneling in a static dilaton black hole. Acta Physica Sinica, 2009, 58(11): 7491-7496. doi: 10.7498/aps.58.7491
    [16] Xia Tian, Zhang Guo-Ying, Zhang Xue-Long, Xue Liu-Ping. Effect of the secondary crystal field-effect and the exchange interaction on magnetic and magneto-optic properties of PrF3. Acta Physica Sinica, 2007, 56(3): 1741-1745. doi: 10.7498/aps.56.1741
    [17] Zhang Jing-Yi, Zhao Zheng. Massive particles’ Hawking radiation via tunneling. Acta Physica Sinica, 2006, 55(7): 3796-3798. doi: 10.7498/aps.55.3796
    [18] Bi Ya-Jun, Yang Guo-Chen, Guan Rong-Hua. The microscopic mechanism of cholesteric liquid crystals. Acta Physica Sinica, 2004, 53(12): 4287-4292. doi: 10.7498/aps.53.4287
    [19] LIU GONG-QIANG, ZHU LIAN-GEN, WEI BANG-DA, ZHANG NING-GAO. THE DYNAMIC FARADAY EFFECT AND IT′S-MECHANISM OF LOSSES. Acta Physica Sinica, 1997, 46(3): 604-611. doi: 10.7498/aps.46.604
    [20] LIU GONG-QIANG, HUANG YAN-PING. QUANTUM THEORY OF FARADAY MAGNETO-OPTIC EFFECT IN THE PARAMAGNETIC MEDIA. Acta Physica Sinica, 1988, 37(10): 1626-1632. doi: 10.7498/aps.37.1626
Metrics
  • Abstract views:  8777
  • PDF Downloads:  388
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2017
  • Accepted Date:  16 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回
Baidu
map