-
Verdet constant is one of the key parameters to characterize the material magneto-optical properties, and dependent on wavelength and temperature. In order to thoroughly analyze the influence mechanisms of the incident wavelength and temperature on the Verdet constant and then uncover its essence, both the advantages and disadvantages of the classical electronic dynamics theory and quantum theory are discussed on account of basic theories and test data. However, neither of the two theories can be separately used to fully explain the Verdet constant and the correlative test data. Therefore, based on the essential property of the magneto-optical effect, the interactions between the incident light and magnetic matter in a magnetic field are studied, and then a hypothesis which suggests that the Faraday effect result from the combination of various factors is proposed. Furthermore, a theory of wave-transition contribution to the Verdet constant is deduced by adopting the theory of wave-particle duality. That is, the Faraday effect is caused by two different contributions simultaneously. One is the wave contribution, which is the interaction between the wave aspect of light and the magneto-optical medium, and the other refers to the transition contribution, which comes from the electronic transition. When the light enters into a deflection angle, the wave contribution is positive while the transition contribution is negative. In a diamagnetic material, since the wave contribution is greater than the transition contribution, the diamagnetic Verdet constant is positive while in a paramagnetic material, on the contrary, the transition contribution is much larger than the wave contribution, so the paramagnetic Verdet constant is negative. According to the above-mentioned theory, the diamagnetic Verdet constant model and the paramagnetic Verdet constant model are proposed by combining the two parts together. Taking the typical diamagnetic material ZF1 and the typical paramagnetic terbium gallium garnet for example, the influences of the incident wavelength and the temperature on the Verdet constant are analyzed, and the deduced theory together with the corresponding models is tested and verified by analyzing the relevant parameters and the test data. Accordingly, the research turns out that the theoretical results correspond to the real values, which proves the rationality of the hypothesis and the authenticity of the deduced theory. Compared with the traditional theories, the wave-transition contribution theory and its model are superior in the sense of precisely describing the material Verdet constant.
-
Keywords:
- Verdet constant /
- Faraday effect /
- wave-particle duality /
- quantum theory
[1] Li C S 2015 Acta Phys. Sin. 64 047801(in Chinese)[李长胜2015 64 047801]
[2] Tian Y, Tan B Z, Yang J, Zhang Y, Gu S H 2015 Chin. Phys. B 24 063302
[3] Zhang F, Tian Y, Yi Z, Gu S H 2016 Chin. Phys. B 25 094206
[4] Yan S L 2015 Acta Phys. Sin. 64 240505(in Chinese)[颜森林2015 64 240505]
[5] Liu G Q, Le Z Q, Shen D F 2001 Magnetooptics (Shanghai:Science and Technology Press) pp30-34(in Chinese)[刘公强, 乐志强, 沈德芳2001磁光学(上海:科学技术出版社)第30–34页]
[6] Li Y S, Liu J, Cao L X, Liu Q Z 2016 Sci. China:Technol. Sci. 59 1899
[7] Liu G Q, Wu B 1988 Acta Opt. Sin. 8 105(in Chinese)[刘公强, 吴蓓1988光学学报 8 105]
[8] Tan C Z, Arndt J 1996 Physica B 233 1
[9] Robet S 1932 Phys. Rev. 41 489
[10] Slezak O, Yasuhara R, Lucianetti A, Mocek T 2015 Opt. Express 23 13641
[11] Xia T, Zhang G Y, Zhang X L, Xue L P 2007 Acta Phys. Sin. 56 1741(in Chinese)[夏天, 张国营, 张学龙, 薛刘萍2007 56 1741]
[12] van Vleck J H, Hebb M H 1934 Phys. Rev. 46 17
[13] Borrelli N F 1964 J. Chem. Phys. 41 3289
[14] Wang Z P, Ouyang C M, Wang X Z 2006 J. Harbin Eng. Univ. 27 782(in Chinese)[王政平, 欧阳春梅, 王晓忠2006哈尔滨工程大学学报 27 782]
[15] Piazza L, Lummen T T, Quiñonez E, Murooka Y, Reed B W, Barwick B, Carbone F 2015 Nat. Commun. 6 6407
[16] Di N, Zhao J L, Jiang Y J, Yang D X, Zhang H, Zhou K S, Han Z H, Chen L F 2006 Acta Photon. Sin. 35 1645(in Chinese)[底楠, 赵建林, 姜亚军, 杨德兴, 张浩, 邹快盛, 韩宗虎, 陈林峰2006光子学报 35 1645]
[17] Slezák O, Yasuhara R, Lucianetti A, Mocek T 2016 Opt. Mater. Express 6 3683
[18] Jiang Y S, Zhou B M, Wang B, Hu L L 2009 Acta Opt. Sin. 29 3157(in Chinese)[蒋亚丝, 周蓓明, 王标, 胡丽丽2009光学学报 29 3157]
[19] Wang S N 2013 M. S. Thesis (Xi'an:Shanxi University of Science and Technology) (in Chinese)[王顺逆2013硕士学位论文(西安:陕西科技大学)]
[20] Yu S Q, Wang F, Huang X J 2010 J. Kashgar Teach. Coll. 31 44(in Chinese)[俞胜清, 王峰, 黄晓俊2010喀什师范学院学报 31 44]
[21] Pu S L, Yang Y H, M J 2003 J. Magn. Mater. Dev. 34 14(in Chinese)[卜胜利, 杨瀛海, 马静2003磁性材料及器件 34 14]
[22] Ma H Y 2010 M. S. Thesis (Changchun:Changchun University of Science and Technology) (in Chinese)[马海云2010硕士学位论文(长春:长春理工大学)]
[23] Schlarb U, Sugg B 2010 Phys. Stat. Sol. 182 K91
[24] Löw U, Zvyagin S, Ozerov M, Schaufuss U, Kataev V, Wolf B, Lthi B 2013 Eur. Phys. J. B 86 1
[25] Chen Z, Hang Y, Wang X, Hong J Q 2016 Solid State Commun. 241 38
[26] Villaverde A B, Donatti D A, Bozinis D G 2001 J. Phys. C:Solid State Phys. 11 L495
[27] Valiev U V, Gruber J B, Burdick G W, Ivanov I A, Fu D J, Pelenovich W O, Juraeva N I 2016 J. Luminescence 176 86
-
[1] Li C S 2015 Acta Phys. Sin. 64 047801(in Chinese)[李长胜2015 64 047801]
[2] Tian Y, Tan B Z, Yang J, Zhang Y, Gu S H 2015 Chin. Phys. B 24 063302
[3] Zhang F, Tian Y, Yi Z, Gu S H 2016 Chin. Phys. B 25 094206
[4] Yan S L 2015 Acta Phys. Sin. 64 240505(in Chinese)[颜森林2015 64 240505]
[5] Liu G Q, Le Z Q, Shen D F 2001 Magnetooptics (Shanghai:Science and Technology Press) pp30-34(in Chinese)[刘公强, 乐志强, 沈德芳2001磁光学(上海:科学技术出版社)第30–34页]
[6] Li Y S, Liu J, Cao L X, Liu Q Z 2016 Sci. China:Technol. Sci. 59 1899
[7] Liu G Q, Wu B 1988 Acta Opt. Sin. 8 105(in Chinese)[刘公强, 吴蓓1988光学学报 8 105]
[8] Tan C Z, Arndt J 1996 Physica B 233 1
[9] Robet S 1932 Phys. Rev. 41 489
[10] Slezak O, Yasuhara R, Lucianetti A, Mocek T 2015 Opt. Express 23 13641
[11] Xia T, Zhang G Y, Zhang X L, Xue L P 2007 Acta Phys. Sin. 56 1741(in Chinese)[夏天, 张国营, 张学龙, 薛刘萍2007 56 1741]
[12] van Vleck J H, Hebb M H 1934 Phys. Rev. 46 17
[13] Borrelli N F 1964 J. Chem. Phys. 41 3289
[14] Wang Z P, Ouyang C M, Wang X Z 2006 J. Harbin Eng. Univ. 27 782(in Chinese)[王政平, 欧阳春梅, 王晓忠2006哈尔滨工程大学学报 27 782]
[15] Piazza L, Lummen T T, Quiñonez E, Murooka Y, Reed B W, Barwick B, Carbone F 2015 Nat. Commun. 6 6407
[16] Di N, Zhao J L, Jiang Y J, Yang D X, Zhang H, Zhou K S, Han Z H, Chen L F 2006 Acta Photon. Sin. 35 1645(in Chinese)[底楠, 赵建林, 姜亚军, 杨德兴, 张浩, 邹快盛, 韩宗虎, 陈林峰2006光子学报 35 1645]
[17] Slezák O, Yasuhara R, Lucianetti A, Mocek T 2016 Opt. Mater. Express 6 3683
[18] Jiang Y S, Zhou B M, Wang B, Hu L L 2009 Acta Opt. Sin. 29 3157(in Chinese)[蒋亚丝, 周蓓明, 王标, 胡丽丽2009光学学报 29 3157]
[19] Wang S N 2013 M. S. Thesis (Xi'an:Shanxi University of Science and Technology) (in Chinese)[王顺逆2013硕士学位论文(西安:陕西科技大学)]
[20] Yu S Q, Wang F, Huang X J 2010 J. Kashgar Teach. Coll. 31 44(in Chinese)[俞胜清, 王峰, 黄晓俊2010喀什师范学院学报 31 44]
[21] Pu S L, Yang Y H, M J 2003 J. Magn. Mater. Dev. 34 14(in Chinese)[卜胜利, 杨瀛海, 马静2003磁性材料及器件 34 14]
[22] Ma H Y 2010 M. S. Thesis (Changchun:Changchun University of Science and Technology) (in Chinese)[马海云2010硕士学位论文(长春:长春理工大学)]
[23] Schlarb U, Sugg B 2010 Phys. Stat. Sol. 182 K91
[24] Löw U, Zvyagin S, Ozerov M, Schaufuss U, Kataev V, Wolf B, Lthi B 2013 Eur. Phys. J. B 86 1
[25] Chen Z, Hang Y, Wang X, Hong J Q 2016 Solid State Commun. 241 38
[26] Villaverde A B, Donatti D A, Bozinis D G 2001 J. Phys. C:Solid State Phys. 11 L495
[27] Valiev U V, Gruber J B, Burdick G W, Ivanov I A, Fu D J, Pelenovich W O, Juraeva N I 2016 J. Luminescence 176 86
Catalog
Metrics
- Abstract views: 8777
- PDF Downloads: 388
- Cited By: 0