Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transient structure of thin films based on one-dimensional chain model

Guo Xin Li Ming-Hua Li Yi-Fei Tao Meng-Ze Wang Jin-Guang Li Da-Zhang Xin Jian-Guo Chen Li-Ming

Citation:

Transient structure of thin films based on one-dimensional chain model

Guo Xin, Li Ming-Hua, Li Yi-Fei, Tao Meng-Ze, Wang Jin-Guang, Li Da-Zhang, Xin Jian-Guo, Chen Li-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Functional materials have received much attention in the development of scientific technology. Macroscopic function of material is usually linked to the microscopic properties. In order to understand the relationship between structure and function, it is necessary to observe transient structural change of material in real time. In the earlier experimental work femtosecond optical probes were used to measure associated modulation in optical properties like transmissivity or reflectivity and extract the information about structural dynamics through sophisticated theoretical modeling. Since the development of laser-based ultrafast X-ray sources, there has been extensive work on femtosecond X-ray diffraction measurements. The coupling of sensitive X-ray with time-resolved pump-probe technique provides a way to directly monitor the time-dependent lattice structural changes in condensed matter. Recent researches are devoted to the study of non-thermal melting and coherent acoustic photons. The classical continuous elastic equation can only provide a limited view of structural dynamics. So, simulation of structural dynamics at an atomic level and comparison of such simulation with time-resolved X-ray diffraction data are necessary.#br#In this paper, we use the one-dimensional chain model to study the effect of thermal stress on the lattice due to the inhomogeneity of temperature distribution after ultrafast laser heating. It is developed from the classic continuous elastic equation by considering a nanometer film as a chain of point mass connected by springs. The simulation can directly reveal the positon of each point mass (atom) as a function of time for a given temperature (stress) profile. The simulation results accord very well with experimental data obtained with femtosecond X-ray diffraction. Compared with simulation results, the ultrafast X-ray diffraction experimental results are not enough to distinguish the compression near the zero time, but the characteristic time (~123 ps) and broadening of the diffraction peak are clearly observed. The simulation and experimental study of the lattice structural response are of great help for understanding the direct relationship between the lattice responses caused by ultrafast laser excitation, the generation and propagation of strain, one-dimensional chain model has important applications in studying the recoverable ultrafast lattice dynamics of metals, semiconductors and other materials.
      Corresponding author: Chen Li-Ming, lmchen@iphy.ac.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 11334013, 11421064, 11374210).
    [1]

    Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309

    [2]

    Sheng Z M, Mima K, Zhang J, Sanuki H 2005 Phys. Rev. Lett. 94 095003

    [3]

    Chen L M, Wang W M, Kando M, Hudson L T, Liu F, Lin X X, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Zhang J 2010 Nucl. Instru. Meth. Phys. Res. Sect. A 619 128

    [4]

    Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J P, Umstadter D, Hulin D 2004 Phys. Rev. Lett. 93 135005

    [5]

    Chen L M, Liu F, Wang W M, Kando M, Mao J Y, Zhang L, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Wei Z Y, Zhang J 2010 Phys. Rev. Lett. 104 215004

    [6]

    Chen X C, Zhou J P, Wang H Y, Xu P S, Pan G Q 2011 Chin. Phys. B 20 096102

    [7]

    Sokolowski T K, Blome C, Dietrich C, Tarasevitch A, Hornvon H M, Vonder L D, Cavalleri A, Squier J, Kammler M 2001 Phys. Rev. Lett. 87 225701

    [8]

    Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P 2001 Nature 410 65

    [9]

    Schick D, Bojahr A, Herzog M, Schmising C V K, Shayduk R, Leitenberger W, Gaal P, Bargheer M 2012 Rev. Sci. Instrum. 83 025104

    [10]

    Sokolowski T K, Blome C, Blums J, Cavalleri A, Dietrich C, Tarasevitch A, Uschmann I, Förster E, Kammler M, Hornvon H M 2003 Nature 422 287

    [11]

    Chen J, Tomov I, Elsayed A, Rentzepis P 2006 Chem. Phys. Lett. 419 374

    [12]

    Chen L M, Kando M, Xu M, Li Y, Koga J, Chen M, Xu H, Yuan X, Dong Q, Sheng Z M 2008 Phys. Rev. Lett. 100 045004

    [13]

    Reich C, Uschmann I, Ewald F, Dusterer S, Lubcke A, Schwoerer H, Sauerbrey R, Forster E, Gibbon P 2003 Phys. Rev. E 68 056408

    [14]

    Tao Z S, Han T T, Subhendra D M, Phillip M D, Yuan F, Ruan C Y, Kevin W, Wu J Q 2012 Phys. Rev. Lett. 109 166406

    [15]

    Liang W X, Giovanni M V, Ahmed H Z 2014 Proc. Natl. Acad. Sci. USA 111 5491

    [16]

    Huang K, Li M H, Yan W C, Guo X, Li D Z, Chen Y P, Ma Y, Zhao J R, Li Y F, Chen L M, Zhang J 2014 Rev. Sci. Instrum. 85 113304

    [17]

    Huang K, Yan W C, Li M H, Tao M Z, Chen Y P, Chen J, Yuan X H, Zhao J R, Ma Y, Li D Z, Gao J, Chen L M, Zhang J 2013 Acta. Phys. Sin. 62 205204(in Chinese)[黄开, 闫文超, 李明华, 陶孟泽, 陈燕萍, 陈洁, 远晓辉, 赵家瑞, 马勇, 李大章, 高杰, 陈黎明, 张杰2013 62 205204]

    [18]

    Hohlfeld J, Wellershoff S S, Gdde J, Conrad U, Jähnke V, Matthias E 2000 Chem. Phys. 251 237

    [19]

    Anisimov S I, Kapeliovich B L, Perelman T L 1974 J. Exp. Theor. Phys. 66 776

    [20]

    Bargheer M, Zhavoronkov N, Gritsai Y, Woo J C, Kim D S, Woerner M, Elsaesser T 2004 Science 306 1771

  • [1]

    Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309

    [2]

    Sheng Z M, Mima K, Zhang J, Sanuki H 2005 Phys. Rev. Lett. 94 095003

    [3]

    Chen L M, Wang W M, Kando M, Hudson L T, Liu F, Lin X X, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Zhang J 2010 Nucl. Instru. Meth. Phys. Res. Sect. A 619 128

    [4]

    Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J P, Umstadter D, Hulin D 2004 Phys. Rev. Lett. 93 135005

    [5]

    Chen L M, Liu F, Wang W M, Kando M, Mao J Y, Zhang L, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Wei Z Y, Zhang J 2010 Phys. Rev. Lett. 104 215004

    [6]

    Chen X C, Zhou J P, Wang H Y, Xu P S, Pan G Q 2011 Chin. Phys. B 20 096102

    [7]

    Sokolowski T K, Blome C, Dietrich C, Tarasevitch A, Hornvon H M, Vonder L D, Cavalleri A, Squier J, Kammler M 2001 Phys. Rev. Lett. 87 225701

    [8]

    Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P 2001 Nature 410 65

    [9]

    Schick D, Bojahr A, Herzog M, Schmising C V K, Shayduk R, Leitenberger W, Gaal P, Bargheer M 2012 Rev. Sci. Instrum. 83 025104

    [10]

    Sokolowski T K, Blome C, Blums J, Cavalleri A, Dietrich C, Tarasevitch A, Uschmann I, Förster E, Kammler M, Hornvon H M 2003 Nature 422 287

    [11]

    Chen J, Tomov I, Elsayed A, Rentzepis P 2006 Chem. Phys. Lett. 419 374

    [12]

    Chen L M, Kando M, Xu M, Li Y, Koga J, Chen M, Xu H, Yuan X, Dong Q, Sheng Z M 2008 Phys. Rev. Lett. 100 045004

    [13]

    Reich C, Uschmann I, Ewald F, Dusterer S, Lubcke A, Schwoerer H, Sauerbrey R, Forster E, Gibbon P 2003 Phys. Rev. E 68 056408

    [14]

    Tao Z S, Han T T, Subhendra D M, Phillip M D, Yuan F, Ruan C Y, Kevin W, Wu J Q 2012 Phys. Rev. Lett. 109 166406

    [15]

    Liang W X, Giovanni M V, Ahmed H Z 2014 Proc. Natl. Acad. Sci. USA 111 5491

    [16]

    Huang K, Li M H, Yan W C, Guo X, Li D Z, Chen Y P, Ma Y, Zhao J R, Li Y F, Chen L M, Zhang J 2014 Rev. Sci. Instrum. 85 113304

    [17]

    Huang K, Yan W C, Li M H, Tao M Z, Chen Y P, Chen J, Yuan X H, Zhao J R, Ma Y, Li D Z, Gao J, Chen L M, Zhang J 2013 Acta. Phys. Sin. 62 205204(in Chinese)[黄开, 闫文超, 李明华, 陶孟泽, 陈燕萍, 陈洁, 远晓辉, 赵家瑞, 马勇, 李大章, 高杰, 陈黎明, 张杰2013 62 205204]

    [18]

    Hohlfeld J, Wellershoff S S, Gdde J, Conrad U, Jähnke V, Matthias E 2000 Chem. Phys. 251 237

    [19]

    Anisimov S I, Kapeliovich B L, Perelman T L 1974 J. Exp. Theor. Phys. 66 776

    [20]

    Bargheer M, Zhavoronkov N, Gritsai Y, Woo J C, Kim D S, Woerner M, Elsaesser T 2004 Science 306 1771

  • [1] Zeng Chao, Mao Yi-Yi, Wu Ji-Zhou, Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Topological phase in one-dimensional momentum space lattice of ultracold atoms without chiral symmetry. Acta Physica Sinica, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [2] Liu Xu, Huang Yu, Mao Jing-Yi, Chen Li-Ming. Ultrafast strain dynamics in SrCoO2.5 thin films. Acta Physica Sinica, 2021, 70(18): 186202. doi: 10.7498/aps.70.20210457
    [3] Wang Jian-Li, Guo Liang, Xu Xian-Fan, Ni Zhong-Hua, Chen Yun-Fei. Manipulation of lattice vibration by ultrafast spectroscopy. Acta Physica Sinica, 2017, 66(1): 014203. doi: 10.7498/aps.66.014203
    [4] Li Jun, Chen Xiao-Hui, Wu Qiang, Luo Bin-Qiang, Li Mu, Yang Qing-Guo, Tao Tian-Jiong, Jin Ke, Geng Hua-Yun, Tan Ye, Xue Tao. Experimental investigation on dynamic lattice response by in-situ Xray diffraction method. Acta Physica Sinica, 2017, 66(13): 136101. doi: 10.7498/aps.66.136101
    [5] Jiang Yan, Liu Gui-Li. Influences of shear deformation on electronic structure and optical properties of B, N doped carbon nanotube superlattices. Acta Physica Sinica, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [6] Sun Yun, Wang Sheng-Lai, Gu Qing-Tian, Xu Xin-Guang, Ding Jian-Xu, Liu Wen-Jie, Liu Guang-Xia, Zhu Sheng-Jun. Study of KDP crystal lattice strain and stress by high resolution X-ray diffraction. Acta Physica Sinica, 2012, 61(21): 210203. doi: 10.7498/aps.61.210203
    [7] Sun Wei-Feng. First-principles study of (InAs)1/(GaSb)1 superlattice atomic chains. Acta Physica Sinica, 2012, 61(11): 117104. doi: 10.7498/aps.61.117104
    [8] Tan Guo-Tai, Chen Zheng-Hao. XRD analysis on lattice structure of La1-xTexMnO3. Acta Physica Sinica, 2007, 56(3): 1702-1706. doi: 10.7498/aps.56.1702
    [9] WANG YU-TIAN, ZHUANG YAN, JIANG DE-SHENG, YANG XIAO-PING, JIANG XIAO-MING, WU JIA-YANG, XIU LI-SONG, ZHENG WEN-LI. STUDY OF DOUBLE-BARRIER SUPERLATTICE BY SYNCHROTRON RADIATION AND DOUBLE-CRYSTAL X-RAY DIFFRACTION. Acta Physica Sinica, 1996, 45(10): 1709-1716. doi: 10.7498/aps.45.1709
    [10] HAO JIAN-MIN, CHEN JI-ZHOU, ZHANG SHI-MIN. INFLUENCE OF DIFFERENT COHERENT DOMAIN SIZES ASSOCIATED WITH SUBLATTICES ON XRD INTE-GRATED WIDTH AND INTEGRATED INTENSITY. Acta Physica Sinica, 1994, 43(5): 772-778. doi: 10.7498/aps.43.772
    [11] HE XIAN-CHANG, WU ZI-QIN, ZHAO TE-XIU, Lü ZHI-HUI, WANG XIAO-PING, SUN GUO-XI. INVESTIGATION OF LATTICE DEFORMATION OF POROUS SILICON FILMS BY X-RAY DOUBLE CRYSTAL DIFFRACTION. Acta Physica Sinica, 1993, 42(6): 954-962. doi: 10.7498/aps.42.954
    [12] LI JIAN-HUA, MAI ZHEN-HONG, CUI SHU-FAN. X-RAY DOUBLE-CRYSTAL DIFFRACTION AND TOPOGRAPHY STUDY OF STRAIN RELAXED InGaAs/GaAs SUPERLATTICES. Acta Physica Sinica, 1993, 42(9): 1485-1490. doi: 10.7498/aps.42.1485
    [13] QIAO HAO, ZI JIAN, XU ZHI-ZHONG, ZHANG KAI-MING. BAND STRUCTURE OF Si/Ge STRAINED LAYER SUPERLATTICE. Acta Physica Sinica, 1993, 42(8): 1317-1323. doi: 10.7498/aps.42.1317
    [14] ZHU NAN-CHANG, LI RUN-SHEN, XU SHUN-SHENG. INVESTIGATION OF THE SEMICONDUCTOR STRAINED SUPERLATTICE STRUCTURE AND INTERFACE BY X-RAY ROCKING-CURVE ANALYSIS. Acta Physica Sinica, 1991, 40(3): 433-440. doi: 10.7498/aps.40.433
    [15] TIAN LIANG-GUANG, ZHU NAN-CHANG, CHEN JING-YI, LI RUN-SHEN, XU SHUN-SHENG, ZHOU GUO-LIANG. X-RAY DOUBLE-CRYSTAL DIFFRACTION STUDY OF HIGH QUALITY GexSi1-x/Si STRAINED LAYER SUPERLATTICE. Acta Physica Sinica, 1991, 40(3): 441-448. doi: 10.7498/aps.40.441
    [16] ZHOU GUO-LIANG, SHEN XIAO-LIANG, SHENG CHI, JIANG WEI-DONG, YU MING-REN. SMALL-ANGLE X-RAY DIFFRACTION ANALYSIS OF GexSi1-x/Si SUPERLATTICE. Acta Physica Sinica, 1991, 40(1): 56-63. doi: 10.7498/aps.40.56
    [17] TENG FENG-EN, WANG YU-MING. X-RAY MEASUREMENTS ABOUT STACKING FAULTS IN DEFORMED ALPHA BRASS. Acta Physica Sinica, 1989, 38(1): 118-123. doi: 10.7498/aps.38.118
    [18] JIANG XIAO-MING, WU ZI-QIN. SIMULATION OF X-RAY DIFFRACTION PEAK PROFILE OF ONE DIMENSIONAL FIBONACCI SERIES. Acta Physica Sinica, 1988, 37(11): 1900-1905. doi: 10.7498/aps.37.1900
    [19] LING BING-CHANG. PERTURBATIVE SOLUTION OF TAKAGI EQUATION IN X-RAY DIFFRACTION DYNAMIC IN SLIGHTLY DEFORMATION CRYSTAL. Acta Physica Sinica, 1981, 30(11): 1528-1532. doi: 10.7498/aps.30.1528
    [20] HUANG KUN, MO TANG, CHIN KUO-KANG. THE DEFORMATION EFFECTS CAUSED BY ELECTRONS IN ATOMIC LATTICES. Acta Physica Sinica, 1957, 13(4): 271-293. doi: 10.7498/aps.13.271
Metrics
  • Abstract views:  5434
  • PDF Downloads:  94
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2017
  • Accepted Date:  09 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回
Baidu
map