搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

感性神经元模型及其动力学特性研究

吴静 潘春宇

引用本文:
Citation:

感性神经元模型及其动力学特性研究

吴静, 潘春宇

Research on inductive neuron model and its dynamic characteristics

Wu Jing, Pan Chun-Yu
PDF
HTML
导出引用
  • 神经元的大小属于介观尺度范围, 本文考虑神经元的电感特性, 建立了由细胞膜电感、膜电容、钾离子忆阻器和氯离子电阻构成的神经元经典电路模型和介观电路模型. 利用经典电路理论和介观电路的量子理论, 推导了在外部冲击激励下神经元细胞膜电压响应的表达式. 将枪乌贼神经元的电生理参数代入膜电压表达式并计算可知, 两种模型下的膜电压均先增大后减小, 最后达到零值的静息状态, 且其能量主要集中在0—30 Hz的脑电频率范围内. 进一步比较发现, 介观电路模型下膜电压的峰值及达到峰值所需的时间(达峰时间)均低于经典电路模型下的值, 并与枪乌贼轴突受到刺激后的实验结果更接近, 说明介观电路模型更能反应神经元受到刺激后的生理特征. 基于介观电路模型, 随着外部激励强度的增加, 膜电压的峰值增加且达峰时间变短. 膜电压峰值及达峰时间等参数更易受神经元膜电容的影响. 神经元的介观电路模型对于理解神经元受到刺激后的兴奋性, 推动受大脑功能启发的量子神经网络的发展等具有重要意义.
    The size of neuron is on a mesoscopic scale. In this paper, considering the inductance characteristics of the neuron, the classical circuit model and mesoscopic circuit model of neuron including neuron membrane inductance, membrane capacitance, potassium ion memristor and chloride ion resistance are established. Based on the classical circuit theory and the quantum theory of mesoscopic circuit, the expression of neuron membrane voltage response under external impulse excitation is derived. Substituting the electrophysiological parameters of the squid neuron into the expression of membrane voltage, we find that the membrane voltages in both models first increase and then decrease, and finally reach their corresponding resting states of zero value, and their energy values are concentrated mainly in a range of 0–30 Hz in which the brainwave frequency is. Further comparisons show that the peak value of membrane voltage and the time required to reach the peak value (peak time) in the mesoscopic circuit model are lower than those in the classical circuit model, and are closer to the experimental results after the squid axon has been stimulated, indicating that the mesoscopic circuit model can better reflect the physiological characteristics of the stimulated neurons. Based on the mesoscopic circuit model, the peak value of membrane voltage increases and the peak time decreases with the increase of external excitation intensity. Parameters such as membrane voltage peak and peak time are more sensitive to the neuron membrane capacitance. The mesoscopic circuit model of the neuron is of great significance in understanding the excitability of the stimulated neuron and also in promoting the development of quantum neural networks inspired by brain function.
      通信作者: 吴静, wujing06@buaa.edu.cn
      Corresponding author: Wu Jing, wujing06@buaa.edu.cn
    [1]

    徐泠风, 李传东, 陈玲 2016 65 240701Google Scholar

    Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701Google Scholar

    [2]

    胡柏林, 马军, 李凡, 蒲忠胜 2013 62 058701Google Scholar

    Hu B L, Ma J, Li F, Pu Z S 2013 Acta Phys. Sin. 62 058701Google Scholar

    [3]

    李佳佳, 吴莹, 独盟盟, 刘伟明 2015 64 030503Google Scholar

    Li J J, Wu Y, Du M M, Liu W M 2015 Acta Phys. Sin. 64 030503Google Scholar

    [4]

    于文婷, 张娟, 唐军 2017 66 200201Google Scholar

    Yu W T, Zhang J, Tang J 2017 Acta Phys. Sin. 66 200201Google Scholar

    [5]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500Google Scholar

    [6]

    Diehl P U, Pedroni B U, Cassidy A, Merolla P, Neftci E, Zarrella G International Joint Conference on Neural Networks Vancouver, Canada, July 24–29, 2016 p4278

    [7]

    Izhikevich E M 2003 IEEE Trans. Neural Networks 14 1569Google Scholar

    [8]

    王宝燕, 徐伟, 邢真慈 2009 58 6590Google Scholar

    Wang B Y, Xu W, Xing Z C 2009 Acta Phys. Sin. 58 6590Google Scholar

    [9]

    Kalay Z 2011 Crit. Rev. Biochem. Mol. Biol. 46 310Google Scholar

    [10]

    Kampen N G V 2007 Stochastic Processes in Physics and Chemistry (3rd Ed.) (Amsterdam: Elsevier) pp422–428

    [11]

    Chua L 2013 Nanotechnology 24 383001Google Scholar

    [12]

    Khodashenas M, Baghdadi G, Towhidkhah F 2019 J. Math. Neurosci. 9 4Google Scholar

    [13]

    Liu D, Zhao S, Luo X Y, Yuan Y 2019 Front. Neurosci. 13 1061Google Scholar

    [14]

    Zhang X J, Gu H G, Wu F Q 2019 Eur. Phys. J. -Spec. Top. 228 2053Google Scholar

    [15]

    Bao H, Zhang Y Z, Liu W B, Bao B C 2020 Nonlinear Dyn. 100 937Google Scholar

    [16]

    Baysal V, Saraç Z, Yilmaz E 2019 Nonlinear Dyn. 97 1275Google Scholar

    [17]

    Bossy M, Fontbona J, Olivero H 2018 J. Math. Biol. 78 1771Google Scholar

    [18]

    Wang R B, Wang Z Y, Zhu Z Y 2018 Nonlinear Dyn. 92 973Google Scholar

    [19]

    Wang Y H, Wang R B, Xu X Y 2017 Neural Plast. 2017 6207141Google Scholar

    [20]

    Zhu Z Y, Wang R B, Zhu F Y 2018 Front. Neurosci. 12 122Google Scholar

    [21]

    Pfeiffer P, Egusquiza I L, Di Ventra M, Sanz M, Solano E 2016 Sci. Rep. 6 29507Google Scholar

    [22]

    Salmilehto J, Deppe F, Di Ventra M, Sanz M, Solano E 2017 Sci. Rep. 7 42044Google Scholar

    [23]

    Sanz M, Lamata L, Solano E 2018 APL Photonics 3 080801Google Scholar

    [24]

    Gonzalez-Raya T, Cheng X H, Egusquiza I L, Chen X, Sanz M, Solano E 2019 Phys. Rev. Appl. 12 014037Google Scholar

    [25]

    Killoran N, Bromley T R, Arrazola J M, Schuld M, Quesada N, Lloyd S 2019 Phys. Rev. Res. 1 033063Google Scholar

    [26]

    Perdomo-Ortiz A, Benedetti M, Realpe-Gómez J, Biswas R 2018 Quantum Sci. Technol. 3 030502Google Scholar

    [27]

    Schuld M, Killoran N 2019 Phys. Rev. Lett. 122 040504Google Scholar

    [28]

    Cole K S, Baker R F 1941 J. Gen. Physiol. 24 771Google Scholar

    [29]

    Hodgkin A L 1951 Biol. Rev. 26 339Google Scholar

    [30]

    Kumai T 2017 Biophys. Physicobiol. 14 147Google Scholar

    [31]

    Wang R B, Zhang Z K, Jiao X F 2006 Appl. Phys. Lett. 89 123903Google Scholar

    [32]

    周霆 2013 浙江大学学报(理学版) 40 285

    Zhou T 2013 J. Zhejiang Univ. (Sci. Ed.) 40 285 (in Chinese)

    [33]

    Caldeira A O, Leggett A J 1983 Ann. Phys. 149 374Google Scholar

    [34]

    Luo C H, Rudy Y 1991 Circ. Res. 68 1501Google Scholar

  • 图 1  神经元及其电路模型 (a) 神经元的结构; (b) 感性神经元的经典电路模型

    Fig. 1.  Neuron and its circuit model: (a) Structure of the neuron; (b) classical circuit model of the inductive neuron.

    图 2  感性神经元的介观电路模型

    Fig. 2.  Mesoscopic circuit model of the inductive neuron.

    图 3  冲击输入下神经元的动力学响应 (a), (b) 分别为传统HH单离子通道神经元经典和介观电路模型下膜电压(蓝色)和K+电导(红色)随时间变化的曲线; (c), (d) 分别为感性神经元经典和介观电路模型下膜电压(蓝色)和K+电导(红色)随时间变化的曲线; (e), (f) 分别为感性神经元经典和介观电路模型下膜电压的时频功率密度谱图

    Fig. 3.  Dynamic response of a neuron under impulse input: (a), (b) The curves of membrane voltage (blue) and K+ conductivity (red) versus time obtained by solving classical and mesoscopic circuit models of the traditional HH single ion-channel neuron, respectively; (c), (d) the curves of membrane voltage (blue) and K+ conductivity (red) versus time obtained by solving the classical and mesoscopic circuit models of the inductive neuron, respectively; (e), (f) the time-frequency spectrogram of the membrane voltage obtained by solving the classical and mesoscopic circuit models of the inductive neuron, respectively.

    图 4  感性神经元介观电路模型中膜电压输出响应与外部激励和神经元内部参数的关系 (a), (c), (e) 分别为Vp-mI, R, LC的变化曲线; (b), (d), (f)分别为Tr-mI, R, LC的变化曲线

    Fig. 4.  The relationship between the output response of the membrane voltage in the mesoscopic circuit model of inductive neuron and the external excitation and the internal parameters of the neuron: (a), (c), (e) The dependence curves of Vp-m on I, R, L and C, respectively; (b), (d), (f) the dependence curves of Tr-m on I, R, L and C, respectively.

    表 1  感性神经元的Vp-mTr-m对神经元内部参数的灵敏度

    Table 1.  Sensitivity of Vp-m and Tr-m of the inductive neuron to the internal parameters.

    电流幅值I/mA1234
    max(dVp-m/dR) /(mV·mΩ–1)3.90 × 10–47.75 × 10–411.74 × 10–415.44 × 10–4
    max(dVp-m/dL) (mV·mH–1)–1.19 × 10–2–2.15 × 10–2–2.97 × 10–2–3.67 × 10–2
    max(dVp-m/dC) (mV·mF–1)–2.60 × 10–2–5.20 × 10–2–7.90 × 10–2–10.46 × 10–2
    max(dTr-m/dR) (μs·mΩ–1)2.53 × 10–32.50 × 10–32.47 × 10–32.41 × 10–3
    max(dTr-m/dL) (μs·mH–1)6.476.175.875.38
    max(dTr-m/dC) (μs·mF–1)2.53 × 1052.18 × 1051.91 × 1051.73 × 105
    下载: 导出CSV
    Baidu
  • [1]

    徐泠风, 李传东, 陈玲 2016 65 240701Google Scholar

    Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701Google Scholar

    [2]

    胡柏林, 马军, 李凡, 蒲忠胜 2013 62 058701Google Scholar

    Hu B L, Ma J, Li F, Pu Z S 2013 Acta Phys. Sin. 62 058701Google Scholar

    [3]

    李佳佳, 吴莹, 独盟盟, 刘伟明 2015 64 030503Google Scholar

    Li J J, Wu Y, Du M M, Liu W M 2015 Acta Phys. Sin. 64 030503Google Scholar

    [4]

    于文婷, 张娟, 唐军 2017 66 200201Google Scholar

    Yu W T, Zhang J, Tang J 2017 Acta Phys. Sin. 66 200201Google Scholar

    [5]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500Google Scholar

    [6]

    Diehl P U, Pedroni B U, Cassidy A, Merolla P, Neftci E, Zarrella G International Joint Conference on Neural Networks Vancouver, Canada, July 24–29, 2016 p4278

    [7]

    Izhikevich E M 2003 IEEE Trans. Neural Networks 14 1569Google Scholar

    [8]

    王宝燕, 徐伟, 邢真慈 2009 58 6590Google Scholar

    Wang B Y, Xu W, Xing Z C 2009 Acta Phys. Sin. 58 6590Google Scholar

    [9]

    Kalay Z 2011 Crit. Rev. Biochem. Mol. Biol. 46 310Google Scholar

    [10]

    Kampen N G V 2007 Stochastic Processes in Physics and Chemistry (3rd Ed.) (Amsterdam: Elsevier) pp422–428

    [11]

    Chua L 2013 Nanotechnology 24 383001Google Scholar

    [12]

    Khodashenas M, Baghdadi G, Towhidkhah F 2019 J. Math. Neurosci. 9 4Google Scholar

    [13]

    Liu D, Zhao S, Luo X Y, Yuan Y 2019 Front. Neurosci. 13 1061Google Scholar

    [14]

    Zhang X J, Gu H G, Wu F Q 2019 Eur. Phys. J. -Spec. Top. 228 2053Google Scholar

    [15]

    Bao H, Zhang Y Z, Liu W B, Bao B C 2020 Nonlinear Dyn. 100 937Google Scholar

    [16]

    Baysal V, Saraç Z, Yilmaz E 2019 Nonlinear Dyn. 97 1275Google Scholar

    [17]

    Bossy M, Fontbona J, Olivero H 2018 J. Math. Biol. 78 1771Google Scholar

    [18]

    Wang R B, Wang Z Y, Zhu Z Y 2018 Nonlinear Dyn. 92 973Google Scholar

    [19]

    Wang Y H, Wang R B, Xu X Y 2017 Neural Plast. 2017 6207141Google Scholar

    [20]

    Zhu Z Y, Wang R B, Zhu F Y 2018 Front. Neurosci. 12 122Google Scholar

    [21]

    Pfeiffer P, Egusquiza I L, Di Ventra M, Sanz M, Solano E 2016 Sci. Rep. 6 29507Google Scholar

    [22]

    Salmilehto J, Deppe F, Di Ventra M, Sanz M, Solano E 2017 Sci. Rep. 7 42044Google Scholar

    [23]

    Sanz M, Lamata L, Solano E 2018 APL Photonics 3 080801Google Scholar

    [24]

    Gonzalez-Raya T, Cheng X H, Egusquiza I L, Chen X, Sanz M, Solano E 2019 Phys. Rev. Appl. 12 014037Google Scholar

    [25]

    Killoran N, Bromley T R, Arrazola J M, Schuld M, Quesada N, Lloyd S 2019 Phys. Rev. Res. 1 033063Google Scholar

    [26]

    Perdomo-Ortiz A, Benedetti M, Realpe-Gómez J, Biswas R 2018 Quantum Sci. Technol. 3 030502Google Scholar

    [27]

    Schuld M, Killoran N 2019 Phys. Rev. Lett. 122 040504Google Scholar

    [28]

    Cole K S, Baker R F 1941 J. Gen. Physiol. 24 771Google Scholar

    [29]

    Hodgkin A L 1951 Biol. Rev. 26 339Google Scholar

    [30]

    Kumai T 2017 Biophys. Physicobiol. 14 147Google Scholar

    [31]

    Wang R B, Zhang Z K, Jiao X F 2006 Appl. Phys. Lett. 89 123903Google Scholar

    [32]

    周霆 2013 浙江大学学报(理学版) 40 285

    Zhou T 2013 J. Zhejiang Univ. (Sci. Ed.) 40 285 (in Chinese)

    [33]

    Caldeira A O, Leggett A J 1983 Ann. Phys. 149 374Google Scholar

    [34]

    Luo C H, Rudy Y 1991 Circ. Res. 68 1501Google Scholar

  • [1] 吴静, 潘春宇. 感性神经元模型及其动力学特性研究.  , 2021, (): . doi: 10.7498/aps.70.20211626
    [2] 崔翔. 电流连续的细导体段模型的磁场及电感.  , 2020, 69(3): 034101. doi: 10.7498/aps.69.20191212
    [3] 蔡伟, 许友安, 杨志勇. 三价镨离子掺杂对铽镓石榴石晶体磁光性能影响的量子计算.  , 2019, 68(13): 137801. doi: 10.7498/aps.68.20190576
    [4] 吴泽, 范洪义. 矩阵形式的不变本征算符方法以及几种介观电路的本征频率.  , 2019, 68(22): 220301. doi: 10.7498/aps.68.20190651
    [5] 蔡伟, 邢俊晖, 杨志勇. 磁光材料Verdet常数贡献性的讨论.  , 2017, 66(18): 187801. doi: 10.7498/aps.66.187801
    [6] 宋德华, 吕梦菲, 任翔, 李萌萌, 俎云霄. 忆阻电路的基本性质及其应用.  , 2012, 61(11): 118101. doi: 10.7498/aps.61.118101
    [7] 周亮, 张靖仪. 带电带磁粒子的量子隧穿辐射.  , 2010, 59(6): 4380-4384. doi: 10.7498/aps.59.4380
    [8] 梁晓冰, 刘希顺, 刘安芝, 王博亮. 弱信号在Hodgkin-Huxley神经元单向耦合系统中的传输特性.  , 2009, 58(7): 5065-5069. doi: 10.7498/aps.58.5065
    [9] 刘成周, 张昌平, 王忠林. 静态 dilaton 黑洞中带电磁荷粒子的隧穿效应.  , 2009, 58(11): 7491-7496. doi: 10.7498/aps.58.7491
    [10] 丁宁, 张扬, 刘全, 肖德龙, 束小建, 宁成. 电感分布对双层丝阵Z箍缩内爆动力学模式的影响.  , 2009, 58(2): 1083-1090. doi: 10.7498/aps.58.1083
    [11] 苏 杰, 王继锁, 梁宝龙, 张晓燕. 介观电容耦合LC电路在有限温度下的能量及热效应.  , 2008, 57(11): 7216-7220. doi: 10.7498/aps.57.7216
    [12] 宁 成, 丁 宁, 杨震华. “强光一号”装置上部分Z箍缩实验结果的物理分析.  , 2007, 56(1): 338-345. doi: 10.7498/aps.56.338
    [13] 张靖仪, 赵 峥. 静质量不为零的粒子的量子隧穿辐射.  , 2006, 55(7): 3796-3798. doi: 10.7498/aps.55.3796
    [14] 崔元顺. 介观多环耦合系统中的量子电流增强效应.  , 2005, 54(4): 1799-1803. doi: 10.7498/aps.54.1799
    [15] 毕亚军, 杨国琛, 关荣华. 液晶胆甾相的形成机制.  , 2004, 53(12): 4287-4292. doi: 10.7498/aps.53.4287
    [16] 王继锁, 冯健, 詹明生. 无耗散介观电感耦合电路的库仑阻塞和电荷的量子效应.  , 2001, 50(2): 299-303. doi: 10.7498/aps.50.299
    [17] 王继锁, 刘堂昆, 詹明生. 平移压缩Fock态下介观电容耦合电路的量子涨落.  , 2000, 49(11): 2271-2275. doi: 10.7498/aps.49.2271
    [18] 王继锁, 韩保存, 孙长勇. 介观电容耦合电路的量子涨落.  , 1998, 47(7): 1187-1192. doi: 10.7498/aps.47.1187
    [19] 陈斌, 李有泉, 沙健, 张其瑞. 介观电路中电荷的量子效应.  , 1997, 46(1): 129-133. doi: 10.7498/aps.46.129
    [20] 高守恩, 陈斌, 焦正宽. 低温下介观电路的量子涨落.  , 1995, 44(9): 1480-1483. doi: 10.7498/aps.44.1480
计量
  • 文章访问数:  5048
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 修回日期:  2021-10-20
  • 上网日期:  2022-02-20
  • 刊出日期:  2022-02-20

/

返回文章
返回
Baidu
map