-
The research of micro-region emission state for thermal dispenser cathode surface,especially in-situ observation and analysis,is an important subject in the field of thermal cathode.A newly developed instrument aiming at meeting the special operation requirements of thermal dispenser cathode is used to carry out this research.This instrument combines the functions of deep ultraviolet laser photo-emission electron microscope and thermal-emission electron microscope,so it is called DUV-PEEM/TEEM.In this paper,its basic principle is introduced emphatically.In addition,the actual applications of the microscope system to the electron emission investigation of thermal dispenser cathode are displayed. This system is equipped with the heating unit,which is used for activating the thermal dispenser cathode sample,and the temperature of sample can reach 1400℃.The system has three imaging modes,namely,photoemission electron imaging, cathode thermal emission electron imaging,and united imaging by integrating cathode thermal emission electron and photoemission electron.By applying new microscope system to traditional thermal dispenser cathode,we acquire the photoemission electron images of impregnated barium aluminate cathode surface at room temperature.In the heating process,we observe the thermal electron emission phenomenon originating from thermal dispenser cathode and record the variation process with temperature change.A high emission cathode which we developed before,is also studied with DUV-PEEM/TEEM.Fortunately,we find that some bright stripes appear on the surface of high emission cathode when the cathode temperature reaches 800℃.The widths of these bright stripes are about 100 nm.We calculate the thermal emission electron imaging resolution of this system by using these thermal electron emission stripes and the obtained resolution reaches 28 nm.Conveniently,the emission performance and uniformity of this high emission cathode are compared with those of traditional impregnated barium aluminate cathode directly at same temperature. Using united imaging mode of the system,in-situ observation and analysis of thermal electron emission spots on high emission cathode surface are carried out successfully.The results indicate as follows.For thermal dispenser cathode,the deep ultraviolet laser photoemission electron imaging can be used to show the surface fundamental micro-morphology of cathode;cathode thermal emission electron imaging is suitable for revealing the intrinsic emission uniformity of the thermal dispenser cathode;with the united imaging by integrating cathode thermal emission electron and photoemission electron,the positions of effective emission points on cathode surface can be fixed accurately.Based on these applications and findings,we believe that DUV-PEEM/TEEM also has ability to investigate the processes of cathode poisoning and recovery.
-
Keywords:
- deep ultraviolet laser /
- photo emission electron microscope /
- thermal emission electron microscope /
- dispenser cathode
[1] Gilmour Jr A S (Translated by Ding Y G, Zhang Z C) 2012 Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers and Gyrotrons (Beijing:National Defense Industry Press) pp39-40(in Chinese)[Gilmour Jr A S著(丁耀根, 张兆传译) 2012速调管、行波管、磁控管、正交场放大器和回旋管(北京:国防工业出版社)第3940页]
[2] Wang W X 2012 Vacuum Electronic Devices (Beijing:National Defense Industry Press) p11(in Chinese)[王文祥2012真空电子器件(北京:国防工业出版社)第11页]
[3] Jones D, Mcneely D, Swanson L W 1979 Appl. Surf. Sci. 2 232
[4] Chen D S, Lindau I, Hecht M H, Viescas A J, Nogami J, Spicer W E 1982 Appl. Surf. Sci. 13 321
[5] Brion D, Tonnerre J C, Shroff A M 1983 Appl. Surf. Sci. 16 55
[6] Koenig M F, Grant J T 1985 Appl. Surf. Sci. 20 481
[7] Ares Fang C S, Maloney C E 1990 J. Vac. Sci. Technol. A 8 2329
[8] Li Y T, Zhang H L, Liu P K, Zhang M C 2006 Acta Phys. Sin. 55 6677(in Chinese)[李玉涛, 张洪来, 刘濮鲲, 张明晨2006 55 6677]
[9] Yin S Y, Zhang H L, Yang J X, Urash I, Qian H J, Wang J O, Wang Y, Wang X X 2011 J. Electron. Inf. Technol. 33 3040(in Chinese)[阴生毅, 张洪来, 杨靖鑫, 奎热西, 钱海杰, 王嘉欧, 王宇, 王欣欣2011电子与信息学报 33 3040]
[10] Wang J S, Wang Y M, Wang X, Zhang X Z, Yang F, Liu W, Zhou M L 2013 Proceedings of the 14th IEEE International Vacuum Electronics Conference Paris, France, May 21-23, 2013 p1
[11] Liang W L, Wang Y M, Liu W, Li H Y, Wang J S 1984 J. Electron. Inf. Technol. 6 89(in Chinese)[张恩虬, 刘学悫1984电子科学学刊 6 89]
[12] Motta C C 2016 Proceedings of the 17th IEEE International Vacuum Electronics Conference Monterey, USA, April 1921, 2016 p1
[13] Zhang E Q, Liu X Q 1984 J. Electron. Inf. Technol. 6 89 (in Chinese) [张恩虬, 刘学悫1984 电子科学学刊6 89]
[14] Fang H M, Su Q X, Su X C 1983 J. Vac. Sci. Technol. 3 91(in Chinese)[方厚民, 苏翘秀, 苏煦春1983真空科学与技术学报 3 91]
[15] Bauer E 2001 J. Phys. Condens. Matter 13 11391
[16] Wlegmann L 1972 J. Microsc. 96 1
[17] Gnther S, Kaulich B, Gregoratti L, Kiskinova M 2002 Prog. Surf. Sci. 70 187
[18] Turner D W, Plummer I R, Porter H Q 1984 J. Microsc. 136 259
[19] Guo F Z 2010 Physics 39 211(in Chinese)[郭方准2010物理 39 211]
[20] Ning X Y, Fu Q, Bao X H 2016 Acta Phys.-Chim. Sin. 32 171(in Chinese)[宁艳晓, 傅强, 包信和2016物理化学学报 32 171]
[21] Engel W, Kordesch M E, Rotermund H H, Kubala S, Oertzen A V 1991 Ultramicroscopy 36 148
[22] Yin S Y, Zhang Z C, Peng Z, Zheng Q, Wang Y 2013 IEEE Trans. Electron. Dev. 60 4258
-
[1] Gilmour Jr A S (Translated by Ding Y G, Zhang Z C) 2012 Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers and Gyrotrons (Beijing:National Defense Industry Press) pp39-40(in Chinese)[Gilmour Jr A S著(丁耀根, 张兆传译) 2012速调管、行波管、磁控管、正交场放大器和回旋管(北京:国防工业出版社)第3940页]
[2] Wang W X 2012 Vacuum Electronic Devices (Beijing:National Defense Industry Press) p11(in Chinese)[王文祥2012真空电子器件(北京:国防工业出版社)第11页]
[3] Jones D, Mcneely D, Swanson L W 1979 Appl. Surf. Sci. 2 232
[4] Chen D S, Lindau I, Hecht M H, Viescas A J, Nogami J, Spicer W E 1982 Appl. Surf. Sci. 13 321
[5] Brion D, Tonnerre J C, Shroff A M 1983 Appl. Surf. Sci. 16 55
[6] Koenig M F, Grant J T 1985 Appl. Surf. Sci. 20 481
[7] Ares Fang C S, Maloney C E 1990 J. Vac. Sci. Technol. A 8 2329
[8] Li Y T, Zhang H L, Liu P K, Zhang M C 2006 Acta Phys. Sin. 55 6677(in Chinese)[李玉涛, 张洪来, 刘濮鲲, 张明晨2006 55 6677]
[9] Yin S Y, Zhang H L, Yang J X, Urash I, Qian H J, Wang J O, Wang Y, Wang X X 2011 J. Electron. Inf. Technol. 33 3040(in Chinese)[阴生毅, 张洪来, 杨靖鑫, 奎热西, 钱海杰, 王嘉欧, 王宇, 王欣欣2011电子与信息学报 33 3040]
[10] Wang J S, Wang Y M, Wang X, Zhang X Z, Yang F, Liu W, Zhou M L 2013 Proceedings of the 14th IEEE International Vacuum Electronics Conference Paris, France, May 21-23, 2013 p1
[11] Liang W L, Wang Y M, Liu W, Li H Y, Wang J S 1984 J. Electron. Inf. Technol. 6 89(in Chinese)[张恩虬, 刘学悫1984电子科学学刊 6 89]
[12] Motta C C 2016 Proceedings of the 17th IEEE International Vacuum Electronics Conference Monterey, USA, April 1921, 2016 p1
[13] Zhang E Q, Liu X Q 1984 J. Electron. Inf. Technol. 6 89 (in Chinese) [张恩虬, 刘学悫1984 电子科学学刊6 89]
[14] Fang H M, Su Q X, Su X C 1983 J. Vac. Sci. Technol. 3 91(in Chinese)[方厚民, 苏翘秀, 苏煦春1983真空科学与技术学报 3 91]
[15] Bauer E 2001 J. Phys. Condens. Matter 13 11391
[16] Wlegmann L 1972 J. Microsc. 96 1
[17] Gnther S, Kaulich B, Gregoratti L, Kiskinova M 2002 Prog. Surf. Sci. 70 187
[18] Turner D W, Plummer I R, Porter H Q 1984 J. Microsc. 136 259
[19] Guo F Z 2010 Physics 39 211(in Chinese)[郭方准2010物理 39 211]
[20] Ning X Y, Fu Q, Bao X H 2016 Acta Phys.-Chim. Sin. 32 171(in Chinese)[宁艳晓, 傅强, 包信和2016物理化学学报 32 171]
[21] Engel W, Kordesch M E, Rotermund H H, Kubala S, Oertzen A V 1991 Ultramicroscopy 36 148
[22] Yin S Y, Zhang Z C, Peng Z, Zheng Q, Wang Y 2013 IEEE Trans. Electron. Dev. 60 4258
Catalog
Metrics
- Abstract views: 6177
- PDF Downloads: 147
- Cited By: 0