Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on interfacial mechanical behavior of single-layer monocrystalline graphene on a stretchable substrate

Qiu Wei Zhang Qi-Peng Li Qiu Xu Chao-Chen Guo Jian-Gang

Citation:

Experimental study on interfacial mechanical behavior of single-layer monocrystalline graphene on a stretchable substrate

Qiu Wei, Zhang Qi-Peng, Li Qiu, Xu Chao-Chen, Guo Jian-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Monocrystalline graphene is expected to become a core material for the next-generation flexible electronic device, owing to its superior mechanical and electrical properties. Therefore, it is essential to analyze the interfacial mechanical property of the composite structure composed of large-scale monocrystalline graphene, prepared by chemical vapor deposition (CVD), and flexible substrate in experiment. Recent years, micro-Raman spectroscopy has become a useful method of micro/nano-mechanics for the experimental investigations on the properties of low-dimensional nanomaterials, such as carbon nanotube (CNT), graphene, molybdenum disulfide (MoS2). Especially, Raman spectroscopy is effectively applied to the investigations on the mechanical behaviors of the interfaces between graphene films and flexible substrates. Among these researches, most of the measured samples are small-scale monocrystalline graphene films which are mechanically exfoliated from highly oriented pyrolytic graphite, a few ones are the large-scale single-layer polycrystalline graphene films prepared by CVD. There is still lack of study of the large-scale single-layer monocrystalline graphene. In this work, micro-Raman spectroscopy is used to quantitatively characterize the behavior of interface between single-layer monocrystalline graphene film prepared by CVD and polyethylene terephthalate (PET) substrate under uniaxial tensile loading. At each loading step from 0 to 2.5% tensile strain on the substrate, the in-plane stress distribution of the graphene is measured directly by using Raman spectroscopy. The interfacial shear stress at the graphene/PET interface is then achieved. The experimental result exhibits that during the whole process of uniaxial tensile loading on the PET substrate, the evolution of the graphene/PET interface includes three states (adhesion, sliding and debonding). Based on these results, the classical shear-lag model is introduced to analyze the interfacial stress transfer from the flexible substrate to the single-layer graphene film. By fitting the experimental data, several mechanical parameters are identified, including the interface strength, the interface stiffness and the interface fracture toughness. The Raman measurements and result analyses are carried out on the samples whose single-layer graphene films have different lengths. It is shown that the stress transfer at the graphene/PET interface controlled by the van der Waals force has obvious scale effect compared with the graphene length. The interface strength, viz. the maximum of the interfacial shear stress, decreases with the increase of the graphene length. While the graphene length has no effect on the debonding strain or the strain transfer limit of graphene/PET interface. Combining with other previous studies of the large-scale single-layer graphene shows that the mechanical parameters of the interface between graphene and flexible substrate have no relation no matter whether the graphene is monocrystalline or polycrystalline.
      Corresponding author: Guo Jian-Gang, guojg@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11422219, 11672203, 11372216, 11472070).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Bostwick A, Speck F, Seyller T, Horn K, Polini M, Asgari R, MacDonald A H, Rotenberg E 2010 Science 328 999

    [3]

    Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H J, Huang R, Kim J S, Li T, Li Y, Liechti K M, Lu N S, Park H S, Reed E J, Wang P, Yakobson B I, Zhang T, Zhang Y W, Zhou Y, Zhu Y 2017 Extreme Mech. Lett. 13 42

    [4]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y Ⅱ, Kim Y J, Kim K S,Özyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [5]

    Won S, Hwangbo Y, Lee S K, Kim K S, Kim K S, Lee S M, Lee H J, Ahn J H, Kim J H, Lee S B 2014 Nanoscale 6 6057

    [6]

    Raju A P A, Lewis A, Derby B, Young R J, Kinloch I A, Zan R, Novoselov K S 2014 Adv. Funct. Mater. 24 2865

    [7]

    Xu C C, Xue T, Guo J G, Kang Y L, Qiu W, Song H B, Xie H M 2015 Mater. Lett. 161 755

    [8]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26

    [9]

    Zhang T, Li X Y, Gao H J 2015 Int. J. Fract. 196 1

    [10]

    Han J L, Zeng M Q, Zhang T, Fu L 2015 Chin. Sci. Bull. 60 2091(in Chinese)[韩江丽, 曾梦琪, 张涛, 付磊2015科学通报60 2091]

    [11]

    Robertson A W, Warner J H 2011 Nano Lett. 11 1182

    [12]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286

    [13]

    Xiong W, Zhou Y S, Jiang L J, Sarjar A, Mahjouri-Samani M, Xie Z Q, Gao Y, Ianno N J, Jiang L, Lu Y F 2013 Adv. Mater. 25 630

    [14]

    Song Y N, Pan D Y, Cheng Y, Wang P, Zhao P, Wang H T 2015 Carbon 95 1027

    [15]

    Cheng Y, Song Y N, Zhao D C, Zhang X W, Yin S Q, Wang P, Wang M, Xia Y, Maruyama S, Zhao P, Wang H T 2016 Chem. Mater. 28 2165

    [16]

    Kang Y L, Qiu Y, Lei Z K, Hu M 2005 Opt. Laser Eng. 43 847

    [17]

    Cen H, Kang Y L, Lei Z K, Qin Q H, Qiu W 2006 Compos. Struct. 75 532

    [18]

    Li X, Peng Y 2006 Appl. Phys. Lett. 89 234104

    [19]

    Li X D, Tao G, Yang Y Z 2001 Opt. Laser Technol. 33 53

    [20]

    Li X D, Wei C, Yang Y 2005 Opt. Laser Eng. 43 869

    [21]

    Zhang Q C, Jiang Z Y, Jiang H F, Chen Z J, Wu X P 2005 Int. J. Plastic. 21 2150

    [22]

    Wang M, Hu X F, Wu X P 2006 Mater. Res. Bull. 41 1949

    [23]

    Xu F, Li Y, Hu X, Niu Y, Zhao J, Zhang Z 2012 Mater. Lett. 67 162

    [24]

    Jiang H F, Zhang Q C, Chen X D, Chen Z J, Jiang Z Y, Wu X P, Fan J H 2007 Acta Mater. 55 2219

    [25]

    Gong L, Kinloch I A, Young R J, Riaz I, Jalil R, Novoselov K S 2010 Adv. Mater. 22 2694

    [26]

    Young R J, Gong L, Kinloch I A, Riaz I, Jalil R, Novoselov K S 2011 ACS Nano 5 3079

    [27]

    Jiang T, Huang R, Zhu Y 2014 Adv. Funct. Mater. 24 396

    [28]

    Dai Z H, Wang G R, Liu L Q, Hou Y, Wei Y G, Zhang Z 2016 Compos. Sci. Technol. 1 136

    [29]

    Xu C C, Xue T, Guo J G, Qin Q H, Wu S, Song H B, Xie H M 2015 J. Appl. Phys. 117 164301

    [30]

    Xu C C, Xue T, Qiu W, Kang Y L 2016 ACS Appl. Mat. Interfaces 8 27099

    [31]

    Suk J W, Kitt A, Magnuson C W, Hao Y F, Ahmed S, An J, Swan A K, Golderg B B, Ruoff R S 2011 ACS Nano 5 6919

    [32]

    Kang Y L, Zhang Z F, Wang H W, Qin Q H 2005 Mat. Sci. Eng. A:Struct. 394 312

    [33]

    Zhang Z F, Kang Y L, Wang H W, Qin Q H, Qiu Y, Li X Q 2006 Measurement 39 710

    [34]

    Ferrari A C, Basko D M 2013 Nature Nanotech. 8 235

    [35]

    Tanaka M, Young R J 2006 J. Mater. Sci. 41 963

    [36]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433

    [37]

    Sakata H, Dresselhaus G, Dresselhaus M S, Endo M 1988 J. Appl. Phys. 63 2769

    [38]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [39]

    Yu T, Ni Z H, Du C L, You Y M, Wang Y Y, Shen Z X 2008 J. Phys. Chem. C 33 12602

    [40]

    Guo G D, Zhu Y 2015 J. Appl. Mech. 82 031005

    [41]

    Cong C X, Yu T, Wang H M 2010 ACS Nano 6 3175

    [42]

    Sasaki K, Sato K, Saito R, Jiang J, Onari S, Tanaka Y 2007 Phys. Rev. B 75 235430

    [43]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Bostwick A, Speck F, Seyller T, Horn K, Polini M, Asgari R, MacDonald A H, Rotenberg E 2010 Science 328 999

    [3]

    Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H J, Huang R, Kim J S, Li T, Li Y, Liechti K M, Lu N S, Park H S, Reed E J, Wang P, Yakobson B I, Zhang T, Zhang Y W, Zhou Y, Zhu Y 2017 Extreme Mech. Lett. 13 42

    [4]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y Ⅱ, Kim Y J, Kim K S,Özyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [5]

    Won S, Hwangbo Y, Lee S K, Kim K S, Kim K S, Lee S M, Lee H J, Ahn J H, Kim J H, Lee S B 2014 Nanoscale 6 6057

    [6]

    Raju A P A, Lewis A, Derby B, Young R J, Kinloch I A, Zan R, Novoselov K S 2014 Adv. Funct. Mater. 24 2865

    [7]

    Xu C C, Xue T, Guo J G, Kang Y L, Qiu W, Song H B, Xie H M 2015 Mater. Lett. 161 755

    [8]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26

    [9]

    Zhang T, Li X Y, Gao H J 2015 Int. J. Fract. 196 1

    [10]

    Han J L, Zeng M Q, Zhang T, Fu L 2015 Chin. Sci. Bull. 60 2091(in Chinese)[韩江丽, 曾梦琪, 张涛, 付磊2015科学通报60 2091]

    [11]

    Robertson A W, Warner J H 2011 Nano Lett. 11 1182

    [12]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286

    [13]

    Xiong W, Zhou Y S, Jiang L J, Sarjar A, Mahjouri-Samani M, Xie Z Q, Gao Y, Ianno N J, Jiang L, Lu Y F 2013 Adv. Mater. 25 630

    [14]

    Song Y N, Pan D Y, Cheng Y, Wang P, Zhao P, Wang H T 2015 Carbon 95 1027

    [15]

    Cheng Y, Song Y N, Zhao D C, Zhang X W, Yin S Q, Wang P, Wang M, Xia Y, Maruyama S, Zhao P, Wang H T 2016 Chem. Mater. 28 2165

    [16]

    Kang Y L, Qiu Y, Lei Z K, Hu M 2005 Opt. Laser Eng. 43 847

    [17]

    Cen H, Kang Y L, Lei Z K, Qin Q H, Qiu W 2006 Compos. Struct. 75 532

    [18]

    Li X, Peng Y 2006 Appl. Phys. Lett. 89 234104

    [19]

    Li X D, Tao G, Yang Y Z 2001 Opt. Laser Technol. 33 53

    [20]

    Li X D, Wei C, Yang Y 2005 Opt. Laser Eng. 43 869

    [21]

    Zhang Q C, Jiang Z Y, Jiang H F, Chen Z J, Wu X P 2005 Int. J. Plastic. 21 2150

    [22]

    Wang M, Hu X F, Wu X P 2006 Mater. Res. Bull. 41 1949

    [23]

    Xu F, Li Y, Hu X, Niu Y, Zhao J, Zhang Z 2012 Mater. Lett. 67 162

    [24]

    Jiang H F, Zhang Q C, Chen X D, Chen Z J, Jiang Z Y, Wu X P, Fan J H 2007 Acta Mater. 55 2219

    [25]

    Gong L, Kinloch I A, Young R J, Riaz I, Jalil R, Novoselov K S 2010 Adv. Mater. 22 2694

    [26]

    Young R J, Gong L, Kinloch I A, Riaz I, Jalil R, Novoselov K S 2011 ACS Nano 5 3079

    [27]

    Jiang T, Huang R, Zhu Y 2014 Adv. Funct. Mater. 24 396

    [28]

    Dai Z H, Wang G R, Liu L Q, Hou Y, Wei Y G, Zhang Z 2016 Compos. Sci. Technol. 1 136

    [29]

    Xu C C, Xue T, Guo J G, Qin Q H, Wu S, Song H B, Xie H M 2015 J. Appl. Phys. 117 164301

    [30]

    Xu C C, Xue T, Qiu W, Kang Y L 2016 ACS Appl. Mat. Interfaces 8 27099

    [31]

    Suk J W, Kitt A, Magnuson C W, Hao Y F, Ahmed S, An J, Swan A K, Golderg B B, Ruoff R S 2011 ACS Nano 5 6919

    [32]

    Kang Y L, Zhang Z F, Wang H W, Qin Q H 2005 Mat. Sci. Eng. A:Struct. 394 312

    [33]

    Zhang Z F, Kang Y L, Wang H W, Qin Q H, Qiu Y, Li X Q 2006 Measurement 39 710

    [34]

    Ferrari A C, Basko D M 2013 Nature Nanotech. 8 235

    [35]

    Tanaka M, Young R J 2006 J. Mater. Sci. 41 963

    [36]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433

    [37]

    Sakata H, Dresselhaus G, Dresselhaus M S, Endo M 1988 J. Appl. Phys. 63 2769

    [38]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [39]

    Yu T, Ni Z H, Du C L, You Y M, Wang Y Y, Shen Z X 2008 J. Phys. Chem. C 33 12602

    [40]

    Guo G D, Zhu Y 2015 J. Appl. Mech. 82 031005

    [41]

    Cong C X, Yu T, Wang H M 2010 ACS Nano 6 3175

    [42]

    Sasaki K, Sato K, Saito R, Jiang J, Onari S, Tanaka Y 2007 Phys. Rev. B 75 235430

    [43]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

  • [1] Han Tong-Wei, Li Xuan-Zheng, Zhao Ze-Ruo, Gu Ye-Tong, Ma Chuan, Zhang Xiao-Yan. Mechanical properties and deformation mechanisms of two-dimensional borophene under different loadings. Acta Physica Sinica, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [2] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [3] Zhang Fu-Jian, Chen Yue, Gao Xiang, Liu Zhen, Zhang Zhong-Qiang. Uni-directional self-driving of water droplets on monolayer graphene-covered wedge-shaped copper substrate. Acta Physica Sinica, 2021, 70(20): 200202. doi: 10.7498/aps.70.20210905
    [4] Han Tong-Wei, Li Ren, Cao Shu-Min, Zhang Xiao-Yan. Investigation of effects of functionalization on mechanical properties of penta-graphene. Acta Physica Sinica, 2021, 70(22): 226201. doi: 10.7498/aps.70.20210764
    [5] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] Bai Jia-Hao, Guo Jian-Gang. Theoretical studies on bidirectional interfacial shear stress transfer of graphene/flexible substrate composite structure. Acta Physica Sinica, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [7] Zhang Zhong-Qiang, Jia Yu-Xia, Guo Xin-Feng, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Characteristics of interaction between single-layer graphene on copper substrate and groove. Acta Physica Sinica, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [8] Zhou Yu-Zhi. Model and applications of transition metal dichalcogenides based compliant substrate epitaxy system. Acta Physica Sinica, 2018, 67(21): 218102. doi: 10.7498/aps.67.20181571
    [9] Gao Qing-Guo, Tian Meng-Chuan, Li Si-Chao, Li Xue-Fei, Wu Yan-Qing. Gigahertz frequency doubler based on millimeter-scale single-crystal graphene. Acta Physica Sinica, 2017, 66(21): 217305. doi: 10.7498/aps.66.217305
    [10] Tang Jian, Liu Ai-Ping, Li Pei-Gang, Shen Jing-Qin, Tang Wei-Hua. Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface self-assembling. Acta Physica Sinica, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [11] Han Lin-Zhi, Zhao Zhan-Xia, Ma Zhong-Quan. Process parameters of large single crystal graphene prepared by chemical vapor deposition. Acta Physica Sinica, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [12] Peng Jin, Chen Guang-Qi, Song Yi-Chi, Gu Kun-Ming, Tang Jiao-Ning. Study on electrical performance of metal copper films deposited by magnetron sputtering on polyimide flexible substrates. Acta Physica Sinica, 2014, 63(13): 138101. doi: 10.7498/aps.63.138101
    [13] Zhang Ji, Zhang De-Ming, Wang Di, Zhang Qing-Li, Sun Dun-Lu, Yin Shao-Tang. Polarized Raman spectra of single crystal Bi2ZnOB2O6. Acta Physica Sinica, 2013, 62(23): 237802. doi: 10.7498/aps.62.237802
    [14] Li Qiao-Qiao, Han Wen-Peng, Zhao Wei-Jie, Lu Yan, Zhang Xin, Tan Ping-Heng, Feng Zhi-Hong, Li Jia. Raman spectra of monoand bi-layer graphenes with ion-induced defects-and its dispersive frequency on the excitation energy. Acta Physica Sinica, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [15] Lü Zhao-Cheng, Li Guang. The thermal and magnetic pre-treatments dependence of the magneto-mechanical behavior of Ni-Mn-Ga single crystal. Acta Physica Sinica, 2009, 58(4): 2746-2751. doi: 10.7498/aps.58.2746
    [16] Cao Chun-Fang, Wu Hui-Zhen, Si Jian-Xiao, Xu Tian-Ning, Chen Jing, Shen Wen-Zhong. Abnormal Raman spectra of PbTe crystalline thin films grown by molecular beam epitaxy. Acta Physica Sinica, 2006, 55(4): 2021-2026. doi: 10.7498/aps.55.2021
    [17] Qin Xiu-Juan, Shao Guang-Jie, Liu Ri-Ping, Wang Wen-Kui, Yao Yu-Shu, Meng Hui-Min. Preparation and Raman spectra of high quality ZnO nano-bulk materials. Acta Physica Sinica, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [18] Ding Shuo, Liu Yu-Long, G. G. Siu. Raman study of SnO2 nanograins under different annealing temperature. Acta Physica Sinica, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [19] LI HONG-NIAN, XU YA-BO, LI HAI-YANG, HE PEI-MO, BAO SHI-NING. RAMAN SPECTRUM STUDY OF PHONON MODES FOR SINGLE-WALL CARBON NANOTUBES. Acta Physica Sinica, 1999, 48(2): 273-278. doi: 10.7498/aps.48.273
    [20] DENG WEN, XIONG LIANG-YUE, LONG QI-WEI, WANG SHU-HE, GUO JIAN-TING. A MICROMECHANISM FOR B IMPROVING THE MECHANICAL PROPERTIES OF MONO- AND POLYCRYSTALLINE Ni3Al ALLOYS. Acta Physica Sinica, 1994, 43(1): 154-160. doi: 10.7498/aps.43.154
Metrics
  • Abstract views:  7259
  • PDF Downloads:  442
  • Cited By: 0
Publishing process
  • Received Date:  12 April 2017
  • Accepted Date:  09 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回
Baidu
map