-
本文通过分析不同几何配置下的偏振拉曼光谱对非线性光学晶体的晶格振动模式进行了研究. 首先根据因子群分析,将晶体的振动模按晶体对称群的不可约表示进行分类,其次测量了晶体在101600 cm-1范围内,不同几何配置下的偏振拉曼光谱,并在此基础上指认了晶体的晶格振动模式. 300 cm-1以下的振动峰,归结为晶体的外振动,来自[BiO6],[ZnO4],[BO4]和[BO3]原子基团的平动和转动;300cm-1以上为晶体的内振动,主要与Bi-O,和Zn-O键振动有关. 晶体拉曼光谱中最高振动频率达到1407 cm-1,被指认为[BO3]三角形中B-O键的伸缩振动,体现了[BO3]基团中高的电子非局域化程度.
-
关键词:
- Bi2ZnOB2O6单晶 /
- 偏振拉曼光谱 /
- 振动模式
Polarized Raman spectra of single crystal Bi2ZnOB2O6 have been recorded in the spectral range 101600 cm-1 at room temperature. Factor group analysis was used to obtain the normal modes of vibration of the crystal. The Raman peaks under 300 cm-1 are assigned to external modes, which are related to the rotational and transitional movement of the [BiO6], [ZnO4], [BO4] and [BO3] groups. Compared with the vibrational spectra of the compounds referred, the satisfactory assignment of most of the high-energy modes to vibrations of Bi-O, B-O and Zn-O bonds can be achieved. In particular, the Raman high-frequency peak located at 1407 cm-1 is attributed to the B-O vibration in the [BO3] triangle.-
Keywords:
- single crystal Bi2ZnOB2O6 /
- Raman spectroscopy /
- vibration mode
[1] Barbier J, Penin N, Cranswick L M 2005 Chem. Mater. 17 3130
[2] Li F, Pan S L, Hou X L, Yao J 2009 Cryst. Growth Des. 9 4091
[3] Li F, Hou X L, Pan S L, Wang X A 2009 Chem. Mater. 21 2846
[4] Li F, Fu P Z, Wu Y C, Zhang J X 2009 J. Cryst. Growth 311 3476
[5] Li F, Pan S, Hou X, Zhou Z 2010 J. Cryst. Growth 312 2383
[6] Zhang Q H, Wang J, Ni H, Wang L 2012 Rare Metals 31 35
[7] Reshak H, Auluck S, Majchrowski A, Kityk I V 2009 Jpn. J. Appl. Phys. Part 1 48 011601
[8] Majchrowski A, Gondek E, Ozga K, Kityk I V, Reshak A H,Kasiewicz T 2009 J. Alloys Compd. 485 29
[9] Weglowski S, Klosowicz S J, Majchrowski A, Tkaczyk S, Reshak A H, Pisarek J, Kityk I V 2010 Mater. Lett. 64 1176
[10] Majchrowski S, Ebothe J, Ozga K, Kityk I V, Reshak A H, Luksiewicz T, Brik M G 2010 J. Phys. D: Appl. Phys. 43 015103
[11] Majchrowski S, Ebothe J, Sanetra J, Ozga K, Kityk I V, Reshak A H, Łukasiewicz T 2010 J. Mater. Sci.: Mater. Electron. 21 726
[12] Merad B I, Reshak A H, Ouahrani T, Bentalha Z 2013 J. Appl. Phys. 113 083505
[13] Chen C T 1979 Sci. Sin. 22 759
[14] Zhang J, Wang D, Zhang D M, Zhang Q L, Wan S M, Sun D L, Yin S T 2013 Acta Phys. Sin. 62 037802 (in Chinese) [张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐 2013 62 037802]
[15] Wang D, Wan S M, Zhang Q L, Sun D L, Gu G X, Yin S T, Zhang G C, You J L, Wang Y Y 2011 Chin. Phys. B 10 108101
[16] Zhang G Y 2001 Lattice vibrational spectroscopy (Higher Education Press) p200 (in Chinese) [张光寅 2001 晶格振动光谱学 (高等教育出版社) 第200页]
[17] Baia L, Stefan R, Kiefer W, Simon S 2005 J. Raman Spectrosc. 36 262
[18] Inoue T, Honmaa T, Dimitrov V, Komatsu T 2010 J. Solid State Chem. 183 3078
[19] Domoratski K V, Pastukhov V I, Kudzin A Y, Ya L Sadovskaya, Rizak V M, Stefanovich V A 2001 Phys. Solid State 42 1443
[20] Krogh-Moe J 1962 Acra Crystallogr. 15 190
[21] Kamitsos E I, Karakassides M A, Chryssikos G D 1989 Phys. Chem. Glasses 30 229
[22] Heyns A M, Range K J, Wildenauer M 1990 Spectrochimica Acta A 46 1621
[23] Jiang Y J, Wang Y, Zeng K Z, Liu Y L 1996 Acta Phys. Sin. 45 885 (in Chinese) [蒋毅坚, 王越, 曾令扯, 刘玉龙 1996 45 885]
[24] Paul G L, Taylor W 1956 J. Phys. 25 1184
[25] Steele W C, Decius J C 1956 J. Chem. Phys. 25 1184
[26] Kaminskiia A A, Beckerb P, Bohatyb L, Uedac K, Takaichic K, Hanuzad J, Maczkad M, Eichlerf H J, Gad M A 2002 Optics Communications 206 179
[27] Shang Q Y, Hudson B S, Huang C 1991 Spectrachim Acta. A 47 291
[28] Damen T C, Pqrtq S P S, Tell B 1966 Phys. Rev. 142 570
-
[1] Barbier J, Penin N, Cranswick L M 2005 Chem. Mater. 17 3130
[2] Li F, Pan S L, Hou X L, Yao J 2009 Cryst. Growth Des. 9 4091
[3] Li F, Hou X L, Pan S L, Wang X A 2009 Chem. Mater. 21 2846
[4] Li F, Fu P Z, Wu Y C, Zhang J X 2009 J. Cryst. Growth 311 3476
[5] Li F, Pan S, Hou X, Zhou Z 2010 J. Cryst. Growth 312 2383
[6] Zhang Q H, Wang J, Ni H, Wang L 2012 Rare Metals 31 35
[7] Reshak H, Auluck S, Majchrowski A, Kityk I V 2009 Jpn. J. Appl. Phys. Part 1 48 011601
[8] Majchrowski A, Gondek E, Ozga K, Kityk I V, Reshak A H,Kasiewicz T 2009 J. Alloys Compd. 485 29
[9] Weglowski S, Klosowicz S J, Majchrowski A, Tkaczyk S, Reshak A H, Pisarek J, Kityk I V 2010 Mater. Lett. 64 1176
[10] Majchrowski S, Ebothe J, Ozga K, Kityk I V, Reshak A H, Luksiewicz T, Brik M G 2010 J. Phys. D: Appl. Phys. 43 015103
[11] Majchrowski S, Ebothe J, Sanetra J, Ozga K, Kityk I V, Reshak A H, Łukasiewicz T 2010 J. Mater. Sci.: Mater. Electron. 21 726
[12] Merad B I, Reshak A H, Ouahrani T, Bentalha Z 2013 J. Appl. Phys. 113 083505
[13] Chen C T 1979 Sci. Sin. 22 759
[14] Zhang J, Wang D, Zhang D M, Zhang Q L, Wan S M, Sun D L, Yin S T 2013 Acta Phys. Sin. 62 037802 (in Chinese) [张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐 2013 62 037802]
[15] Wang D, Wan S M, Zhang Q L, Sun D L, Gu G X, Yin S T, Zhang G C, You J L, Wang Y Y 2011 Chin. Phys. B 10 108101
[16] Zhang G Y 2001 Lattice vibrational spectroscopy (Higher Education Press) p200 (in Chinese) [张光寅 2001 晶格振动光谱学 (高等教育出版社) 第200页]
[17] Baia L, Stefan R, Kiefer W, Simon S 2005 J. Raman Spectrosc. 36 262
[18] Inoue T, Honmaa T, Dimitrov V, Komatsu T 2010 J. Solid State Chem. 183 3078
[19] Domoratski K V, Pastukhov V I, Kudzin A Y, Ya L Sadovskaya, Rizak V M, Stefanovich V A 2001 Phys. Solid State 42 1443
[20] Krogh-Moe J 1962 Acra Crystallogr. 15 190
[21] Kamitsos E I, Karakassides M A, Chryssikos G D 1989 Phys. Chem. Glasses 30 229
[22] Heyns A M, Range K J, Wildenauer M 1990 Spectrochimica Acta A 46 1621
[23] Jiang Y J, Wang Y, Zeng K Z, Liu Y L 1996 Acta Phys. Sin. 45 885 (in Chinese) [蒋毅坚, 王越, 曾令扯, 刘玉龙 1996 45 885]
[24] Paul G L, Taylor W 1956 J. Phys. 25 1184
[25] Steele W C, Decius J C 1956 J. Chem. Phys. 25 1184
[26] Kaminskiia A A, Beckerb P, Bohatyb L, Uedac K, Takaichic K, Hanuzad J, Maczkad M, Eichlerf H J, Gad M A 2002 Optics Communications 206 179
[27] Shang Q Y, Hudson B S, Huang C 1991 Spectrachim Acta. A 47 291
[28] Damen T C, Pqrtq S P S, Tell B 1966 Phys. Rev. 142 570
计量
- 文章访问数: 13676
- PDF下载量: 467
- 被引次数: 0