-
石墨烯作为一种拥有高电子迁移率和高饱和速度的二维材料,在射频电子学领域具有很大的应用潜力,引起了人们广泛的研究兴趣.近些年随着化学气相沉积制备石墨烯技术的发展,高质量大尺寸的单晶石墨烯生长技术也愈加成熟.本文基于化学气相沉积生长的毫米级单晶石墨烯,在高介电常数介质上制备出高性能的石墨烯倍频器,并且对其倍频特性做了系统的研究.研究结果表明:在输入信号频率为1 GHz时,倍频增益可以达到-23.4 dB,频谱纯度可以达到94%.研究了不同漏极偏压以及输入信号功率下倍频增益的变化特性,随着漏极偏压以及输入信号功率的增加,倍频增益增加.对具有不同跨导和电子空穴电导对称性的器件的倍频增益和频谱纯度随输入信号频率fin的变化关系进行了研究.结果表明,跨导对于倍频增益影响显著,在fin=1 GHz时器件的频谱纯度差别不大,均大于90%,但是随着fin增加至4 GHz,电子空穴电导对称性较差的器件频谱纯度下降至42%,电子空穴电导对称性较好的器件仍能保持85%的频谱纯度.这是电子空穴电导对称性和电子空穴响应速度共同作用的结果.本文的研究结果对于高性能石墨烯倍频器设计具有一定的指导意义.Graphene shows great potential applications in ultrahigh speed electronics due to its high carrier mobility and velocity. Nowadays, many radio frequency circuits based on graphene have been realized. For example, graphene frequency doubler is a promising option for signal generation at high frequencies. Graphene frequency doubler can achieve excellent spectral purity, because of its ambipolar transport and highly symmetric transfer characteristics. Here, we present high performance graphene frequency doublers based on millimeter-scale single-crystal graphene on HfO2 and Si substrates. We achieve a high spectral purity degree of larger than 94% without any filtering and the conversion gain is -23.4 dB at fin=1 GHz. The high conversion gain and spectral purity can be attributed to the high-quality millimeter-scale single-crystal graphene and high-quality high- substrates. Furthermore, we investigate the relation of conversion gain to source-drain voltage Vd and input signal power Pin. The results show that the conversion gain increases with source-drain voltage increasing, and the conversion gain also increases with input signal power increasing. The dependence of conversion gain on Vd and Pin can be attributed to the transconductance increasing with Vd and Pin. We compare the conversion gains and spectral purity degrees of graphene frequency doublers with different transconductances and electron-hole symmetries at different frequencies. The result shows that the conversion gain is larger for device with higher transconductance and the spectral purity has a moderate tolerance for the electron-hole symmetry of the graphene transistor at fin=1 GHz. As the working frequency increases to 4 GHz, the spectral purity of the device with weak electron-hole symmetry decreases dramatically, while the spectral purity of the device with better electron-hole symmetry is kept around 85%. We attribute this phenomenon to the different carrier transit times and different electron-hole symmetries of graphene transistors. In conclusion, the short channel graphene transistor with ultrathin gate dielectric and high electron-hole symmetry is needed in order to achieve high performance graphene frequency doubler.
-
Keywords:
- single-crystal graphene /
- high frequency doubler /
- conversion gain /
- spectral purity
[1] Schwierz F 2010 Nat. Nanotechnol. 5 487
[2] Wu Y, Jenkins K A, Valdes-Garcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W, Xia F, Avouris P 2012 Nano Lett. 12 3062
[3] Wu Y, Zou X, Sun M, Cao Z, Wang X, Huo S, Zhou J, Yang Y, Yu X, Kong Y 2016 ACS Appl. Mater. Interfaces 8 25645
[4] Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547
[5] Wang H, Hsu A, Kim K K, Kong J, Palacios T 2010 IEEE International Electron Devices Meeting San Francisco, USA, December 6-8, 2010 p23.6.1
[6] Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng L M 2010 Appl. Phys. Lett. 96 173104
[7] Liao L, Bai J, Cheng R, Zhou H, Liu L, Liu Y, Huang Y, Duan X 2011 Nano Lett. 12 2653
[8] L H, Wu H, Liu J, Huang C, Li J, Yu J, Niu J, Xu Q, Yu Z, Qian H 2014 Nanoscale 6 5826
[9] Andersson M A, Zhang Y, Stake J 2017 IEEE Trans. Microw. Theory Tech. 65 165
[10] Wang H, Hsu A, Wu J, Kong J, Palacios T 2010 IEEE Electron Dev. Lett. 31 906
[11] Yang X, Liu G, Rostami M, Balandin A A, Mohanram K 2011 IEEE Electron Dev. Lett. 32 1328
[12] Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086
[13] Yu C, He Z, Liu Q, Song X, Xu P, Han T, Li J, Feng Z, Cai S 2016 IEEE Electron Dev. Lett. 37 684
[14] Habibpour O, He Z S, Strupinski W, Rorsman N, Zirath H 2017 Sci. Rep. 7 41828
[15] Gan L, Luo Z 2013 ACS Nano 7 9480
[16] Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096
[17] Hao Y, Bharathi M, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B 2013 Science 342 720
[18] Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q 2016 Nat. Mater. 15 43
[19] Wei Z, Fu Y, Liu J, Wang Z, Jia Y, Guo J, Ren L, Chen Y, Zhang H, Huang R, Zhang X 2014 Chin. Phys. B 23 117201
[20] Lakshmi Ganapathi K, Bhat N, Mohan S 2013 Appl. Phys. Lett. 103 073105
[21] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107
[22] Wu Y, Lin Y M, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74
-
[1] Schwierz F 2010 Nat. Nanotechnol. 5 487
[2] Wu Y, Jenkins K A, Valdes-Garcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W, Xia F, Avouris P 2012 Nano Lett. 12 3062
[3] Wu Y, Zou X, Sun M, Cao Z, Wang X, Huo S, Zhou J, Yang Y, Yu X, Kong Y 2016 ACS Appl. Mater. Interfaces 8 25645
[4] Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547
[5] Wang H, Hsu A, Kim K K, Kong J, Palacios T 2010 IEEE International Electron Devices Meeting San Francisco, USA, December 6-8, 2010 p23.6.1
[6] Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng L M 2010 Appl. Phys. Lett. 96 173104
[7] Liao L, Bai J, Cheng R, Zhou H, Liu L, Liu Y, Huang Y, Duan X 2011 Nano Lett. 12 2653
[8] L H, Wu H, Liu J, Huang C, Li J, Yu J, Niu J, Xu Q, Yu Z, Qian H 2014 Nanoscale 6 5826
[9] Andersson M A, Zhang Y, Stake J 2017 IEEE Trans. Microw. Theory Tech. 65 165
[10] Wang H, Hsu A, Wu J, Kong J, Palacios T 2010 IEEE Electron Dev. Lett. 31 906
[11] Yang X, Liu G, Rostami M, Balandin A A, Mohanram K 2011 IEEE Electron Dev. Lett. 32 1328
[12] Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086
[13] Yu C, He Z, Liu Q, Song X, Xu P, Han T, Li J, Feng Z, Cai S 2016 IEEE Electron Dev. Lett. 37 684
[14] Habibpour O, He Z S, Strupinski W, Rorsman N, Zirath H 2017 Sci. Rep. 7 41828
[15] Gan L, Luo Z 2013 ACS Nano 7 9480
[16] Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096
[17] Hao Y, Bharathi M, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B 2013 Science 342 720
[18] Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q 2016 Nat. Mater. 15 43
[19] Wei Z, Fu Y, Liu J, Wang Z, Jia Y, Guo J, Ren L, Chen Y, Zhang H, Huang R, Zhang X 2014 Chin. Phys. B 23 117201
[20] Lakshmi Ganapathi K, Bhat N, Mohan S 2013 Appl. Phys. Lett. 103 073105
[21] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107
[22] Wu Y, Lin Y M, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74
计量
- 文章访问数: 6138
- PDF下载量: 237
- 被引次数: 0