Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Oxygen vacancy induced band gap narrowing of the low-temperature vanadium dioxide phase

Gu Yan-Ni Wu Xiao-Shan

Citation:

Oxygen vacancy induced band gap narrowing of the low-temperature vanadium dioxide phase

Gu Yan-Ni, Wu Xiao-Shan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Switching of vanadium dioxide (VO2) from low-temperature insulating phase to high-temperature rutile phase can be induced by photons with a certain energy. Photoinduced insulator-metal transition is found experimentally in VO2 polycrystalline film by photos with energy even below 0.67 eV. However, insulator-metal transition in single crystal can only be induced when photo energyis above 0.67 eV. In order to understand these experimental phenomena, we make a first-principle study on low-temperature non-magnetic M1 phase of VO2 with oxygen vacancy by density functional theory calculations based on the Heyd-Scuseria-Ernzerhof screened hybrid functional. According to symmetry, M1 phase has two kinds of different oxygen vacancies, O1 and O2 vacancies. Calculations are made on structures and electronic properties of nonmagnetic M1 phases with O1 and O2 vacancies, respectively. The present theoretical results show that neither the short vanadium-vanadium (VV) bond length near O1 or O2 vacancy nor the lattice parameters almost change but the long VV bond length near O1 or O2 vacancy decreases due to the oxygen vacancy. The long VV bond lengths near O1 and O2 vacancies are about 2.80 and 2.95 , respectively, but the long VV bond length is 3.17 in pure M1. The insulating band gap is opened between V 3d bands, and hybridization happens between V 3d and O 2p orbitals. Furthermore, the present theoretical results demonstrate that the band gap of pure nonmagnetic M1 is 0.68 eV while M1 with O1 vacancy, O2 vacancy, and two oxygen vacancies including O1 and O2, have band gaps of 0.23 eV, 0.20 eV, and 0.15 eV, respectively. The band gap decreases probably because oxygen vacancy results in the decease of the long VV bond length near it. The present results can explain the experimental results well.
      Corresponding author: Wu Xiao-Shan, xswu@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1332205, 11274153, 10974081, 10979017) and the Doctoral Research Project of JUST (Nos. JKD120114001).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Atkin J M, Berweger S, Chavez E K, Raschke M B, Cao J, Fan W, Wu J 2012 Phys. Rev. B 85 020101(R)

    [3]

    Cavalleri A, Rini M, Chong H H W, Fourmaux S, Glover T E, Heimann P A, Kieffer J C, Schoenlein R W 2005 Phys. Rev. Lett. 95 067405

    [4]

    Liu L, Cao F, Yao T, Xu Y, Zhou M, Qu B, Pan B, Wu C, Wei S, Xie Y 2012 New J. Chem. 36 619

    [5]

    Yang H W, Sohn J I, Yang J H, Jang J E 2015 Eur. Lett. 109 27004

    [6]

    Asayesh-ardakani H, Yao W, Nie A, Marley P M, Braham E, Klie R F, Banerjee R, Shahbazian-Yassar S 2017 Appl. Phys. Lett. 110 053107

    [7]

    Kim H, Slusar T V, Wulferding D, Yang I, Cho J, Lee M, Choi H C, Jeong Y H, Kim H T, Kim J 2016 Appl. Phys. Lett. 109 233104

    [8]

    Huffman T J, Hendriks C, Walter E J, Yoon J, Ju H, Smith R, Carr G L, Krakauer H, Qazilbash M M 2017 Phys. Rev. B 95 075125

    [9]

    Chen Y, Zhang S, Ke F, Ko C, Lee S, Liu K, Chen B, Ager J W, Jeanloz R, Eyert V, Wu J 2017 Nano Lett. 17 2512

    [10]

    Laverock J, Kittiwatanakul S, Zakharov A, Niu Y, Chen B, Wolf S A, Lu J W, Smith K E 2014 Phys. Rev. Lett. 113 216401

    [11]

    Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhacs A, Chaker M, Siwick B J 2014 Science 346 445

    [12]

    Wegkamp D, Herzog M, Xian L, Gatti M, P Cudazzo, McGahan C L, Marvel R E, Haglund R F, Rubio A, Wolf M, Stähler J 2014 Phys. Rev. Lett. 113 216401

    [13]

    Xu S, Shen X, Hallman K A, Haglund R F, Pantelides S T 2017 Phys. Rev. B 95 125105

    [14]

    Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201 (in Chinese)[罗明海, 徐马记, 黄其伟, 李派, 何云斌2016 65 047201]

    [15]

    Zheng H, Wagner L K 2015 Phys. Rev. Lett. 114 176401

    [16]

    Mazza G, Amaricci A, Capone M, Fabrizio M 2016 Phys. Rev. Lett. 117 176401

    [17]

    Gatti M, Panaccione G, Reining L 2015 Phys. Rev. Lett. 114 116402

    [18]

    Brito W H, Aguiar M C O, Haule K, Kotliar G 2016 Phys. Rev. Lett. 117 056402

    [19]

    Shen N, Dong B, Cao C, Chen Z, Liu J 2016 Phys. Chem. Chem. Phys. 18 28010

    [20]

    Lu J, Liu H, Deng S, Zheng M, Wang Y 2014 Nanoscale 6 7619

    [21]

    Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y 2015 ACS Photon. 2 1306

    [22]

    Fan L, Chen Y, Liu Q, Chen S, Zhu L, Meng Q, Wang B, Zhang Q, Ren H, Zou C 2016 ACS Appl. Mater. Interfaces 8 32971

    [23]

    Sun G, Cao X, Zhou H, Bao S, Jin P 2017 Sol. Energy Mater. Sol. Cells 159 553

    [24]

    Zhang D, Zhu M, Liu Y, Yang K, Liang G 2016 J. Alloys Compd. 659 198

    [25]

    Ito K, Nishikawa K, Iizuka H 2016 Appl. Phys. Lett. 108 053507

    [26]

    Coy H, Cabrera R, Sepúlveda N, Fernández F E, Coy H, Cabrera R, Sepúlveda N, Fernández F E 2010 J. Appl. Phys. 108 113115

    [27]

    Wei J, Wang Z, Chen W, Cobden D H 2009 Nat. Nanotechnol. 4 420

    [28]

    Rini M, Hao Z, Schoenlein R W, Giannetti C, Parmigiani F, Fourmaux S, Kieffer J C, Fujimori A, Onoda M, Wall S, Cavalleri A 2008 Appl. Phys. Lett. 92 181904

    [29]

    Koethe T C, Hu Z, Haverkort M W, Schßler-Langeheine C, Venturini F, Brookes N B, Tjernberg O, Reichelt W, Hsieh H H, Lin H J, Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 116402

    [30]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [31]

    Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906

    [32]

    Yan X, Li Y, Zhao J, Li Y, Bai G, Zhu S 2016 Appl. Phys. Lett. 108 033108

    [33]

    Moser S, Moreschini L, Jaćimović J, Barišić O S, Berger H, Magrez A, Chang Y J, Kim K S, Bostwick A, Rotenberg E, Forró L, Grioni M 2013 Phys. Rev. Lett. 110 196403

    [34]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [35]

    Andersson G, Parck C, Ulfvarson U, Stenhagen E, Thorell B 1956 Acta Chem. Scand. 10 623

    [36]

    Eyert V 2011 Phys. Rev. Lett. 107 16401

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Atkin J M, Berweger S, Chavez E K, Raschke M B, Cao J, Fan W, Wu J 2012 Phys. Rev. B 85 020101(R)

    [3]

    Cavalleri A, Rini M, Chong H H W, Fourmaux S, Glover T E, Heimann P A, Kieffer J C, Schoenlein R W 2005 Phys. Rev. Lett. 95 067405

    [4]

    Liu L, Cao F, Yao T, Xu Y, Zhou M, Qu B, Pan B, Wu C, Wei S, Xie Y 2012 New J. Chem. 36 619

    [5]

    Yang H W, Sohn J I, Yang J H, Jang J E 2015 Eur. Lett. 109 27004

    [6]

    Asayesh-ardakani H, Yao W, Nie A, Marley P M, Braham E, Klie R F, Banerjee R, Shahbazian-Yassar S 2017 Appl. Phys. Lett. 110 053107

    [7]

    Kim H, Slusar T V, Wulferding D, Yang I, Cho J, Lee M, Choi H C, Jeong Y H, Kim H T, Kim J 2016 Appl. Phys. Lett. 109 233104

    [8]

    Huffman T J, Hendriks C, Walter E J, Yoon J, Ju H, Smith R, Carr G L, Krakauer H, Qazilbash M M 2017 Phys. Rev. B 95 075125

    [9]

    Chen Y, Zhang S, Ke F, Ko C, Lee S, Liu K, Chen B, Ager J W, Jeanloz R, Eyert V, Wu J 2017 Nano Lett. 17 2512

    [10]

    Laverock J, Kittiwatanakul S, Zakharov A, Niu Y, Chen B, Wolf S A, Lu J W, Smith K E 2014 Phys. Rev. Lett. 113 216401

    [11]

    Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhacs A, Chaker M, Siwick B J 2014 Science 346 445

    [12]

    Wegkamp D, Herzog M, Xian L, Gatti M, P Cudazzo, McGahan C L, Marvel R E, Haglund R F, Rubio A, Wolf M, Stähler J 2014 Phys. Rev. Lett. 113 216401

    [13]

    Xu S, Shen X, Hallman K A, Haglund R F, Pantelides S T 2017 Phys. Rev. B 95 125105

    [14]

    Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201 (in Chinese)[罗明海, 徐马记, 黄其伟, 李派, 何云斌2016 65 047201]

    [15]

    Zheng H, Wagner L K 2015 Phys. Rev. Lett. 114 176401

    [16]

    Mazza G, Amaricci A, Capone M, Fabrizio M 2016 Phys. Rev. Lett. 117 176401

    [17]

    Gatti M, Panaccione G, Reining L 2015 Phys. Rev. Lett. 114 116402

    [18]

    Brito W H, Aguiar M C O, Haule K, Kotliar G 2016 Phys. Rev. Lett. 117 056402

    [19]

    Shen N, Dong B, Cao C, Chen Z, Liu J 2016 Phys. Chem. Chem. Phys. 18 28010

    [20]

    Lu J, Liu H, Deng S, Zheng M, Wang Y 2014 Nanoscale 6 7619

    [21]

    Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y 2015 ACS Photon. 2 1306

    [22]

    Fan L, Chen Y, Liu Q, Chen S, Zhu L, Meng Q, Wang B, Zhang Q, Ren H, Zou C 2016 ACS Appl. Mater. Interfaces 8 32971

    [23]

    Sun G, Cao X, Zhou H, Bao S, Jin P 2017 Sol. Energy Mater. Sol. Cells 159 553

    [24]

    Zhang D, Zhu M, Liu Y, Yang K, Liang G 2016 J. Alloys Compd. 659 198

    [25]

    Ito K, Nishikawa K, Iizuka H 2016 Appl. Phys. Lett. 108 053507

    [26]

    Coy H, Cabrera R, Sepúlveda N, Fernández F E, Coy H, Cabrera R, Sepúlveda N, Fernández F E 2010 J. Appl. Phys. 108 113115

    [27]

    Wei J, Wang Z, Chen W, Cobden D H 2009 Nat. Nanotechnol. 4 420

    [28]

    Rini M, Hao Z, Schoenlein R W, Giannetti C, Parmigiani F, Fourmaux S, Kieffer J C, Fujimori A, Onoda M, Wall S, Cavalleri A 2008 Appl. Phys. Lett. 92 181904

    [29]

    Koethe T C, Hu Z, Haverkort M W, Schßler-Langeheine C, Venturini F, Brookes N B, Tjernberg O, Reichelt W, Hsieh H H, Lin H J, Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 116402

    [30]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [31]

    Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906

    [32]

    Yan X, Li Y, Zhao J, Li Y, Bai G, Zhu S 2016 Appl. Phys. Lett. 108 033108

    [33]

    Moser S, Moreschini L, Jaćimović J, Barišić O S, Berger H, Magrez A, Chang Y J, Kim K S, Bostwick A, Rotenberg E, Forró L, Grioni M 2013 Phys. Rev. Lett. 110 196403

    [34]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [35]

    Andersson G, Parck C, Ulfvarson U, Stenhagen E, Thorell B 1956 Acta Chem. Scand. 10 623

    [36]

    Eyert V 2011 Phys. Rev. Lett. 107 16401

  • [1] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [2] Hao Guo-Qiang, Zhang Rui, Zhang Wen-Jing, Chen Na, Ye Xiao-Jun, Li Hong-Bo. Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping. Acta Physica Sinica, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [3] Shi Bin, Yuan Li, Tang Tian-Yu, Lu Li-Min, Zhao Xian-Hao, Wei Xiao-Nan, Tang Yan-Lin. Spectral analysis and density functional theory study of tert-butylhydroquinone. Acta Physica Sinica, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [4] Yan Zhong-Bao, Sun Shuai, Zhang Shuai, Zhang Yao, Shi Wei, Sheng Quan, Shi Chao-Du, Zhang Jun-Xiang, Zhang Gui-Zhong, Yao Jian-Quan. Effect of phase transition of vanadium dioxide on resonance characteristics of terahertz anti-resonant fiber and its applications. Acta Physica Sinica, 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [5] Yang Pei-Di, Ouyang Chen, Hong Tian-Shu, Zhang Wei-Hao, Miao Jun-Gang, Wu Xiao-Jun. Study of phase transition of single crystal and polycrystalline vanadium dioxide nanofilms by using continuous laser pump-terahertz probe technique. Acta Physica Sinica, 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [6] Li Jia-Hui, Zhang Ya-Ting, Li Ji-Ning, Li Jie, Li Ji-Tao, Zheng Cheng-Long, Yang Yue, Huang Jin, Ma Zhen-Zhen, Ma Cheng-Qi, Hao Xuan-Ruo, Yao Jian-Quan. Terahertz coding metasurface based vanadium dioxide. Acta Physica Sinica, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [7] Cui Shu-Wen, Li Lu, Wei Lian-Jia, Qian Ping. Theoretical study of density functional of confined CO oxidation reaction between bilayer graphene. Acta Physica Sinica, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [8] Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang, Liu Shang-He. Research progress of metal-insulator phase transition in VO2 induced by electric field. Acta Physica Sinica, 2019, 68(10): 107201. doi: 10.7498/aps.68.20190136
    [9] Wang Ze-Lin, Zhang Zhen-Hua, Zhao Zhe, Shao Rui-Wen, Sui Man-Ling. Mechanism of electrically driven metal-insulator phase transition in vanadium dioxide nanowires. Acta Physica Sinica, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [10] Sun Qi-Xiang, Yan Bing. Computational study of two-body and three-body dissociation of CH3I2+. Acta Physica Sinica, 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [11] Yang Xue, Yan Bing, Lian Ke-Yan, Ding Da-Jun. Theoretical study on the photodissociation reaction of α-cyclohexanedione in ground state. Acta Physica Sinica, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [12] Xiong Ying, Wen Qi-Ye, Tian Wei, Mao Qi, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan. Researches on the electrical properties of vanadium oxide thin films on Si substrates. Acta Physica Sinica, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [13] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [14] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [15] Li Xue-Mei, Zhang Jian-Ping. Theoretical study on the structure, spectra and thermodynamic property of 5-(2-aryloxy-methylbenzimidazole-1-carbadehyde)-1,3,4-oxadiazole-2-thione. Acta Physica Sinica, 2010, 59(11): 7736-7742. doi: 10.7498/aps.59.7736
    [16] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] Chen Liang, Xu Can, Zhang Xiao-Fang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [18] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [19] Wang Li-Xia, Li Jian-Ping, He Xiu-Li, Gao Xiao-Guang. Fabrication of vanadium dioxide films at low temperature and researches on properties of the films. Acta Physica Sinica, 2006, 55(6): 2846-2851. doi: 10.7498/aps.55.2846
    [20] Ye Zhen-Cheng, Cai Jun, Zhang Shu-Ling, Liu Hong-Lai, Hu Ying. Studies on the density profiles of square-well chain fluid confined in a slit pore by density functional theory. Acta Physica Sinica, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
Metrics
  • Abstract views:  7249
  • PDF Downloads:  414
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2017
  • Accepted Date:  11 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回
Baidu
map