-
激光诱导烧结,又称为激光增强接触优化(LECO),可以显著降低TOPCon太阳电池金属电极与硅之间的接触电阻,从而提高电池效率。本文首先研究了反向偏压、激光强度等LECO工艺参数对TOPCon电池性能的影响,并对其影响机理进行了详细的讨论与分析。其次,研究了二次高温烧结与二次LECO工艺对电池性能的影响。当二次烧结温度从280 0C增加到680 0C时,电池效率从26.35%急剧下降至1.3%。但是,对经过二次高温烧结的电池片再进行二次LECO处理,电池效率可以恢复到二次高温烧结前的水平。第三,采用改良后的纯银浆料制备的TOPCon电池,在没有经过LECO处理之前,由于银电极与硅没有形成有效的金属半导体接触,电池平均效率只有0.02%。经过LECO处理后,使用纯银浆料的电池效率提升至26.35%,比使用传统银铝浆料的参考电池提高了0.41%。第四,提出了LECO工艺诱导银-硅接触形成的物理模型,对二次高温烧结及二次LECO处理如何影响电池性能给出了合理的解释,这对于进一步理解和优化LECO工艺在TOPCon太阳电池中的应用具有重要意义。
-
关键词:
- 激光诱导烧结 /
- TOPCon太阳电池 /
- 接触形成 /
- 二次高温烧结
Laser induced sintering, also known as laser enhanced contact optimization (LECO), can significantly reduce the contact resistance between metal electrodes and silicon in TOPCon solar cells, thereby improving its efficiency. This article first studied the effects of LECO process parameters such as reverse bias and laser intensity on the performance of TOPCon solar cells, and analyzed in detail their influencing mechanisms. In the LECO process, as the reverse bias voltage increases, the efficiency of the solar cell first increases and then decreases, while the contact resistivity first decreases and then increases. When the reverse bias voltage is high, the solar cell may be subjected to reverse breakdown. Once the solar cell is reverse breakdown, both the illuminated and non-illuminated areas are in a conducting state. Due to the current diversion effect, the local conducting current density in the illuminated area is much smaller compared to when the solar cell is not reverse broken down. Therefore, the Joule heating caused by this is also much smaller, and the contact resistance between the metal and silicon increases, resulting in a decrease in the efficiency of the solar cell.
Secondly, the influence of secondary high-temperature sintering and secondary LECO on the performance of TOPCon was studied. When the secondary sintering temperature increased from 280 0C to 680 0C, the efficiency of TOPCon sharply decreased from 26.35% to 1.3%. However, by subjecting the solar cells that have undergone secondary high-temperature sintering to secondary LECO treatment, the efficiency can be restored to the level before the secondary high-temperature sintering. Thirdly, TOPCon solar cells prepared using improved pure silver paste does not form effective metal-semiconductor contact between the silver electrode and silicon before LECO treatment, resulting in an average efficiency of only 0.02%. However, after LECO treatment, the efficiency of solar cells using pure silver paste increases to 26.35%, which is 0.41% higher than the reference solar cells using traditional silver aluminum paste. Fourthly, a physical model of LECO induced silver-silicon contact formation was proposed, providing a reasonable explanation for how secondary high-temperature sintering and secondary LECO treatment affect the performance of TOPCon. This is of great significance for further understanding and optimizing the application of LECO technology in TOPCon solar cells.-
Keywords:
- Laser-induced sintering /
- TOPCon solar cell /
- Contact formation /
- Secondary high-temperature sintering
-
[1] Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 120 270
[2] Richter A, Müller R, Benick J 2021 Nat. Energy 6 429
[3] Anderson C L, Nemeth W, Guthrey H 2023 Adv. Energy Mater.13 2203579
[4] Römer U, Peibst R, Ohrdes T,Lim B, Krügener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energy Mater. Sol. Cells 131 85
[5] Haase F, Hollemann C, Schäfer S, Merkle A, Rienäcker M, Krügener J, Brendel R, Peibst R 2018 Sol. Energy Mater. Sol. Cells 186 184
[6] Hermle M, Feldmann F, Bivour M, Goldschmidt J C, Glunz S W 2020 Appl. Phys. Rev. 7 021305
[7] Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801 (in Chinese) 66 158801 [肖友鹏,高超,王涛,周浪,2017 66 158801]
[8] Ren C C, Zhou J K, Zhang B Y, Liu Z, Zhao Y, Zhang X D, Hou G F 2021 Acta Phys. Sin. 70 178401 (in Chinese) [任程超,周佳凯,刘璋,赵颖,张晓丹,侯国付,2021 70 178401]
[9] Yan D, Cuevas A, Michel J,Zhang C, Wan Y M, Zhang X Y, Bullock J 2021 Joule 5 811
[10] Glunz S W,Steinhauser B, Polzin J, Luderer C, Grübel B, Niewelt T,Okasha A, Bories M,Nagel H, Krieg K, Feldmann F, Richter A, Bivour M, Hermle M 2021 Prog. Photovolt.: Res. Appl 31 341
[11] Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2017 Sol. Energy Mater. Sol. Cells 173 96
[12] Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 131 46
[13] Schmidt J, Peibst R, Brendel R. 2018 Sol. Energy Mater. Sol. Cells 187 39
[14] Zhang X Y, Dumbrell R, Li W Q,Xu M Y, Yan D, Jin J S, Wang Z, Zheng P T, Liu C M, Yang J 2023 Prog. Photovolt.: Res. Appl. 31 369
[15] VDMA International technology roadmap for photovoltaic 2023 Frankfurt, Germany, 2023 p60
[16] https://ir.jinkosolar.com/news-releases/news-release-details/jinkosolars-high-efficiency-n-type-monocrystalline-silicon-3
[17] Wang Q, Guo K, Yuan L, Li L, Peng H, Li B, Wang A, Zhang L, Wu W, Ding J, Yuan N 2023 Sol. Energy Mater. Sol. Cells 253 112231
[18] Allen T G, Bullock J, Yang X, Javey A, Wolf S D 2019 Nat. Energy 4 914
[19] Cuevas A, Wan Y M, Yan D, Samundsett C, Allen T, Zhang X, Cui J, Bullock J 2018 Sol. Energy Mater. Sol. Cells 184 38
[20] Riegel S, Mutter F, Lauermann T, Terheiden B, Hahn G 2012 Energy Proc. 21 14
[21] Fritz S, Konig M, Riegel S, Herguth A, Horteis M, Hahn G 2015 IEEE J. Photovoltaics 5 145
[22] Kumar P, Pfeffer M, Willsch B, Eibl O, Koduvelikulathu L J, Mihailetchi L J, Kopecek R 2016 Sol. Energy Mater. Sol. Cells 157 200
[23] Urban T, Heimann M, Schmid A, Mette A, Heitmann J 2015 Energy Proc. 77 420
[24] Aoyama T, Aoki M, Sumita I, Yoshino Y, Ogura A 2016 Energy Proc. 98 106
[25] Fritz S, Emre E, Engelhardt J, Ebert S, Nowak N, Booth J, Hahn G 2016 Energy Proc. 92 925
[26] Mack S, Schube J, Fellmeth T,Feldmann F, Lenes M, Luchies J 2017 Phys. Rapid Res. Lett. 11 1700334
[27] Kiefer F, Krugener J, Heinemeyer F, Osten H J, Brendel R, Peibst R 2016 IEEE J. Photovoltaics 6 1175
[28] Liang L,Li Z G, Cheng L K, Takeda N, Carroll A F 2015 J. Appl. Phys. 117 215102
[29] Fritz S, Engelhardt J, Ebert S, Hahn G 2016 Phys. Status Solidi RRL 10 305
[30] Krassowski E, Großer S, Turek M, Henning A, Zhao H 2021 AIP Conf. Proc. 2367 020005
[31] Fellmeth T, Höffler H, Mack S, Krassowski E, Krieg K, Kafle B, Greulich J 2022 Prog. Photovolt.: Res. Appl. 30 1393
[32] Fan Y, Zou S, Zeng Y, Dai L, Wang Z, Lu Z, Sun H, Zhou X, Liao B, Su X 2024 Solar RRL, 2400268
[33] Dasgupta S, Ok Y W, Upadhyaya V D, Choi W J, Huang Y Y, Duttagupta Y, Rohatgi A 2022 IEEE J. Photovoltaics 12 1282
[34] Kuruganti V V, Isabella O, Mihailetchi V D 2024 Phys. Status Solidi A, 221 2300820
[35] Höffler H, Fellmeth T, Maischner F, Greulich J, Krassowski E, Henning A 2022 AIP Conf. Proc. 2487 110001
[36] Großer S, Krassowski E, Swatek S, Zhao H, Hagendorf C, 2022 IEEE J. Photovolt. 12 26
[37] Höffler H, Simon F, Krassowski E, Greulich J, 2022 12th Silicon PV Conference, Konstanz, March 2022
[38] Mayberry R, Myers K, Chandrasekaran V, Henning A, Zhao H, Hofmüller E 2019 36th European Photovoltaic Solar Energy Conference and Exhibition Marseille, France, September 2019
计量
- 文章访问数: 93
- PDF下载量: 0
- 被引次数: 0