Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles investigation of oxygen diffusion mechanism in -titanium crystals

Yang Liang Wang Cai-Zhuang Lin Shi-Wei Cao Yang

Citation:

First-principles investigation of oxygen diffusion mechanism in -titanium crystals

Yang Liang, Wang Cai-Zhuang, Lin Shi-Wei, Cao Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • How impurity atoms move through a crystal is a fundamental and renewed issue in condensed matter physics and materials science. Diffusion of oxygen (O) in titanium (Ti) affects the formation of titanium-oxides and the design of Tibased alloys. Moreover, the kinetics of initial growth of titania-nanotubes via anodization of a titanium metal substrate also involves the diffusion of oxygen. Therefore, the understanding of the migration mechanism of oxygen atoms in -Ti is extremely important for controlling oxygen diffusion in Ti alloys. In this work, we show how the diffusion coefficient can be predicted directly from first-principles studies without any empirical fitting parameters. By performing the first-principles calculations based on the density functional theory (DFT) through using the Vienna ab initio Simulation Package (VASP), we obtain three locally stable interstitial oxygen sites in the hexagonal closed-packed (hcp) lattice of titanium. These sites are octahedral center (OC) site, hexahedral center (HE) site, and TiTi bond center crowdion (CR) site with interstitial energies of -2.83, -1.61, and -1.48 eV, respectively. From the interstitial energies it follows that oxygen atom prefers to occupy the octahedral site. From electronic structure analysis, it is found that the TiO bonds possess some covalent characteristics and are strong and stable. Using the three stable O sites from our calculations, we propose seven migration pathways for oxygen diffusion in hcp Ti and quantitatively determine the transition state and diffusion barrier with the saddle point along the minimum energy diffusion path by the climbing image nudged elastic band (CI-NEB) method. The microscopic diffusion barriers (E) from the first-principles calculations are important for quantitatively describing the temperature dependent diffusion coefficients D from Arrhenius formula D = L2v* exp(-((E)/(kBT)), where v* is the jumping frequency and L is the atomic displacement of each jump. The jumping frequency v* is determined from where vi and vj are the vibration frequency of oxygen atom at the initial state and the transition state respectively. This analysis leads to the formula for calculating the temperature dependent diffusion coefficient by using the microscopic parameters (vi and E) from first-principles calculations without any fitting parameters. Using the above formula and the vibration frequencies and diffusion barriers from first-principles calculations, we calculate the diffusion coefficients among different interstitial sites. It is found that the diffusion coefficient from the octahedral center site to the available site nearby is in good agreement with the experimental result, i.e., the diffusion rate D is 1.046510-6 m2s-1 with E of 0.5310 eV. The jump from the crowdion site to the octahedral interstitial site prevails over all the other jumps, as a result of its low energy barrier and thus leading to markedly higher diffusivity values. The diffusion of oxygen atoms is mainly controlled by the jump occurring between OC and CR sites, resulting in high diffusion anisotropy. This finding of oxygen diffusion behavior in Ti provides a useful insight into the kinetics at initial stage of oxidation in Ti which is very relevant to many technological applications of Ti-based materials.
      Corresponding author: Wang Cai-Zhuang, czwang@msn.com;cy507@hainu.edu.cn ; Cao Yang, czwang@msn.com;cy507@hainu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51361009), the Foundation for Young Scientist of Hainan University, China (Grant No. qnjj1239), and the Natural Science Foundation of Hainan Province, China (Grant No. 20155216).
    [1]

    Leea T C, Koshyb P, Abdullaha P H Z, Idrisa M I 2016 Surf. Coat. Technol. 301 20

    [2]

    Chen S H, Ho S C, Chang C H, Chen C C 2016 Surf. Coat. Technol. 302 215

    [3]

    Li N B, Xiao G Y, Liu B, Wang Z, Zhu R F 2016 Surf. Coat. Technol. 301 121

    [4]

    Hung W C, Chang F M, Yang T S, Ou K L 2016 Mater. Sci. Eng. C 68 523

    [5]

    Anioek K, Kupka M, Barylski A 2016 Wear 356-357 23

    [6]

    Shokouhfar M, Allahkaram S R 2016 Surf. Coat. Technol. 291 396

    [7]

    Li X, Chen T, Hu J, Li S J, Zou Q, Li Y F, Jiang N, Li H, Li J H 2016 Colloids Surf. B 144 265

    [8]

    Zhou Y, Wen F, Song B, Zhou X, Teng Q, Wei Q S, Shi Y S 2016 Mater. Des. 89 1199

    [9]

    Kang D S, Lee K J, Kwon E P, Tsuchiyama T 2015 Mater. Sci. Eng. A 623 120

    [10]

    Hang W, Chen W Z, Sun J Y, Jiang Z Y 2013 Chin. Phys. B 22 016601

    [11]

    Satko D P, Shaffer B J, Tiley S J, Semiatin S L 2016 Acta Mater. 107 377

    [12]

    Oh J M, Lee B G, Cho S, Lee S W, Choi G, Lim J W 2011 Met. Mater. Int. 17 733

    [13]

    Santhanam A T, Reedhill R E 1971 Metall. Trans. B 2 2619

    [14]

    Shang S L, Zhou B C, Wang W Y, Ross A J, Liu X L, Hu Y J, Fang H Z, Wang Y, Liu Z K 2016 Acta Mater. 109 128

    [15]

    Qu J, Blau P J, Howe J Y 2009 Scripta Mater. 60 10

    [16]

    Bailey R, Sun Y 2015 Surf. Coat. Technol. 28 34

    [17]

    Kresse G, Furthmueller J 1996 Phys. Rev. B Condens. Matter. 54 11169

    [18]

    Joubert D P 1999 Phys. Rev. B Condens. Matter. 1758 1775

    [19]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9901

    [20]

    Scotti L, Mottura A 2016 J. Chem. Phys. 144 084701

    [21]

    Mantina M, Wang Y, Chen L Q 2009 Acta Mater. 57 4102

    [22]

    Vineyard G H 1957 J. Phys. Chem. Solids 3 121

    [23]

    Wu H H, Trinkle D R 2011 Phys. Rev. Lett. 107 4

    [24]

    Scotti L, Mottura A 2016 J. Chem. Phys. 144 8

    [25]

    Bregolin F L, Behar M, Dyment F 2007 Appl. Phys. A 83 37

  • [1]

    Leea T C, Koshyb P, Abdullaha P H Z, Idrisa M I 2016 Surf. Coat. Technol. 301 20

    [2]

    Chen S H, Ho S C, Chang C H, Chen C C 2016 Surf. Coat. Technol. 302 215

    [3]

    Li N B, Xiao G Y, Liu B, Wang Z, Zhu R F 2016 Surf. Coat. Technol. 301 121

    [4]

    Hung W C, Chang F M, Yang T S, Ou K L 2016 Mater. Sci. Eng. C 68 523

    [5]

    Anioek K, Kupka M, Barylski A 2016 Wear 356-357 23

    [6]

    Shokouhfar M, Allahkaram S R 2016 Surf. Coat. Technol. 291 396

    [7]

    Li X, Chen T, Hu J, Li S J, Zou Q, Li Y F, Jiang N, Li H, Li J H 2016 Colloids Surf. B 144 265

    [8]

    Zhou Y, Wen F, Song B, Zhou X, Teng Q, Wei Q S, Shi Y S 2016 Mater. Des. 89 1199

    [9]

    Kang D S, Lee K J, Kwon E P, Tsuchiyama T 2015 Mater. Sci. Eng. A 623 120

    [10]

    Hang W, Chen W Z, Sun J Y, Jiang Z Y 2013 Chin. Phys. B 22 016601

    [11]

    Satko D P, Shaffer B J, Tiley S J, Semiatin S L 2016 Acta Mater. 107 377

    [12]

    Oh J M, Lee B G, Cho S, Lee S W, Choi G, Lim J W 2011 Met. Mater. Int. 17 733

    [13]

    Santhanam A T, Reedhill R E 1971 Metall. Trans. B 2 2619

    [14]

    Shang S L, Zhou B C, Wang W Y, Ross A J, Liu X L, Hu Y J, Fang H Z, Wang Y, Liu Z K 2016 Acta Mater. 109 128

    [15]

    Qu J, Blau P J, Howe J Y 2009 Scripta Mater. 60 10

    [16]

    Bailey R, Sun Y 2015 Surf. Coat. Technol. 28 34

    [17]

    Kresse G, Furthmueller J 1996 Phys. Rev. B Condens. Matter. 54 11169

    [18]

    Joubert D P 1999 Phys. Rev. B Condens. Matter. 1758 1775

    [19]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9901

    [20]

    Scotti L, Mottura A 2016 J. Chem. Phys. 144 084701

    [21]

    Mantina M, Wang Y, Chen L Q 2009 Acta Mater. 57 4102

    [22]

    Vineyard G H 1957 J. Phys. Chem. Solids 3 121

    [23]

    Wu H H, Trinkle D R 2011 Phys. Rev. Lett. 107 4

    [24]

    Scotti L, Mottura A 2016 J. Chem. Phys. 144 8

    [25]

    Bregolin F L, Behar M, Dyment F 2007 Appl. Phys. A 83 37

  • [1] Zhang Jiang-Lin, Wang Zhong-Min, Wang Dian-Hui, Hu Chao-Hao, Wang Feng, Gan Wei-Jiang, Lin Zhen-Kun. First principles study of V/Pd interface interactions and their hydrogen absorption properties. Acta Physica Sinica, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [2] Gong Ling-Yun, Zhang Ping, Chen qian, Lou Zhi-Hao, Xu Jie, Gao Feng. First principles study of structure and property of Nb5+-doped SrTiO3. Acta Physica Sinica, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [3] Zhang Heng, Huang Yan, Shi Wang-Zhou, Zhou Xiao-Hao, Chen Xiao-Shuang. First-principles study on the diffusion dynamics of Al atoms on Si surface. Acta Physica Sinica, 2019, 68(20): 207302. doi: 10.7498/aps.68.20190783
    [4] Liu Ru-Lin, Fang Liang, Hao Yue, Chi Ya-Qing. Density functional theory calculation of diffusion mechanism of intrinsic defects in rutile TiO2. Acta Physica Sinica, 2018, 67(17): 176101. doi: 10.7498/aps.67.20180818
    [5] Pan Feng-Chun, Xu Jia-Nan, Yang Hua, Lin Xue-Ling, Chen Huan-Ming. Ferromagnetism of undoped anatase TiO2 based on the first-principles calculations. Acta Physica Sinica, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [6] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [7] Hou Qing-Yu, Zhao Chun-Wang. A first-principle study of the effect of W-doping on physical properties of anatase TiO2. Acta Physica Sinica, 2015, 64(24): 247201. doi: 10.7498/aps.64.247201
    [8] Yang Biao, Wang Li-Ge, Yi Yong, Wang En-Ze, Peng Li-Xia. First-principles calculations of the diffusion behaviors of C, N and O atoms in V metal. Acta Physica Sinica, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [9] Gao Xue-Yun, Wang Hai-Yan, Li Chun-Long, Ren Hui-Ping, Li De-Chao, Liu Zong-Chang. First-principles study of the effect of lanthanum on the Cu diffusion mechanism in bcc-Fe. Acta Physica Sinica, 2014, 63(24): 248101. doi: 10.7498/aps.63.248101
    [10] Zheng Shu-Kai, Wu Guo-Hao, Liu Lei. First-principles calculations of P-doped anatase TiO2. Acta Physica Sinica, 2013, 62(4): 043102. doi: 10.7498/aps.62.043102
    [11] Li Zong-Bao, Wang Xia, Jia Li-Chao. Synergistic effects in Fe/N codoped anatase TiO2 (101) surface:a theoretical study based on density functional theory calculation. Acta Physica Sinica, 2013, 62(20): 203103. doi: 10.7498/aps.62.203103
    [12] Lu Jin-Lian, Cao Jue-Xian. A first-principles study of capacity and mechanism of a single titanium atom storing hydrogen. Acta Physica Sinica, 2012, 61(14): 148801. doi: 10.7498/aps.61.148801
    [13] Chen Min, Hou Qing. Influence of defects on the coalescence of helium in titanium: An atomistic simulation. Acta Physica Sinica, 2010, 59(2): 1185-1189. doi: 10.7498/aps.59.1185
    [14] Cao Yi-Jie, Ren Bao-Xing, Chen Yu-Hong. First-principles study on the catalytic role of Ti in the hydrogenation of Al(110) surfaces. Acta Physica Sinica, 2010, 59(11): 8015-8020. doi: 10.7498/aps.59.8015
    [15] Chen Min, Wang Jun, Hou Qing. Influence of helium on volume change and stability of titanium structure: An atomistic simulation. Acta Physica Sinica, 2009, 58(2): 1149-1153. doi: 10.7498/aps.58.1149
    [16] Liu Gui-Li. Electronic theoretical study on the corrosion and passivation mechanism of Ti metal. Acta Physica Sinica, 2008, 57(7): 4441-4445. doi: 10.7498/aps.57.4441
    [17] Hou Qing-Yu, Zhang Yue, Zhang Tao. First principle study on the electron life span of degenerate anatase phase TiO2 semi-conductor with high concentration of oxygen vacancies. Acta Physica Sinica, 2008, 57(5): 3155-3159. doi: 10.7498/aps.57.3155
    [18] Zhao Zong-Yan, Liu Qing-Ju, Zhang Jin, Zhu Zhong-Qi. First-principles study of 3d transition metal-doped anatase. Acta Physica Sinica, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [19] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] Liu Gui-Li. Electronic theoretical study of stress corrosion mechanism of Ti metal. Acta Physica Sinica, 2006, 55(4): 1983-1986. doi: 10.7498/aps.55.1983
Metrics
  • Abstract views:  8238
  • PDF Downloads:  735
  • Cited By: 0
Publishing process
  • Received Date:  27 December 2016
  • Accepted Date:  16 January 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map