-
基于周期性密度泛函理论研究了N/Fe共掺杂对锐钛矿TiO2(101)面的修饰作用. 计算了铁替位单掺杂TiO2(101)面及晶体内部后, 晶体结构变化及形成能. 通过形成能的比较发现, Fe从晶体表面向体内迁移时受到势垒阻碍作用. 同时, 对不同位置表面N/Fe近邻共掺杂晶体形成能的比较, 得出了表面共掺杂的最稳定结构. 通过对电子结构及态密度的分析发现: 表面共掺杂态中, N/Fe共掺杂可改变TiO2(101)面的电子结构, 并使TiO2由半导体性向半金属性转变.
-
关键词:
- 锐钛矿TiO2(101)面 /
- N/Fe共掺杂 /
- 第一性原理 /
- 半金属性
The interaction between implanted nitrogen atom and transition metal iron at the anatase TiO2(101) surface is investigated by the periodic density functional theory calculations. Substitutional and interstitial configurations and formation energies for Fe-doping, and several N and Fe atom codopings at different sites of the (101) surface are considered. Our formation energy calculations suggest that when Fe atom transfers from surface to body, it is subjected to a larger energy barrier while asynergetic effect takes place between the nitrogen and the codoped Fe in the surface. The analyses of the electronic structure and densities of states show that the property of half-metallic appears, with N and Fe codoped.-
Keywords:
- anatase TiO2(101) /
- codoped /
- first-principles calculation /
- half-metallic
[1] He Y B, Tilocca A, Dulub O 2009 Nat. Mater. 24 585
[2] Peng L P, Xia Z C, Yang C Q 2012 Acta Phys. Sin. 61 127104 (in Chinese) [彭丽萍, 夏正才, 杨昌权 2012 61 127104]
[3] Diebold U 2003 Surf. Sci. Rep. 48 53
[4] Ganduglia-Pirovano M V, Hofmann A, Sauer J 2007 Surf. Sci. Rep. 62 219
[5] Pacchioni G 2008 J. Chem. Phys. 128 182505
[6] Besenbacher F, Lauritsen J V, Linderoth T R 2009 Surf. Sci. 603 1315
[7] Regan B O, Gratzel M 1991 Nature 353 737
[8] Fujishima A, Honda K 1972 Nature 238 37
[9] Chen Q, Cao H H 2004 Chin. Phys. 13 2121
[10] Muramatsu Y, Jin Q, Fujishima M, Tada H 2012 Appl. Catal. B: Environ. 119 74
[11] Sun Y B, Zhang X Q, Li G K, Cheng Z H 2012 Chin. Phys. B 21 047503
[12] Torrell M, Cunha L, Cavaleiro A, Alves E, Barradas N P, Vaz F 2012 Appl. Surf. Sci. 256 6536
[13] Zhang Z D, Hou Q Y, Li C, Zhao C W 2012 Acta Phys. Sin. 61 117102 (in Chinese) [张振铎, 侯清玉, 李聪, 赵春旺 2012 61 117102]
[14] Zheng S K, Wu G H, Liu L 2013 Acta Phys. Sin. 62 043102 (in Chinese) [郑树凯, 吴国浩, 刘磊 2013 62 043102]
[15] Liu G, Wang X W, Wang L Z, Chen Z G, Li F, Qing G, Cheng H M 2009 J. Col. Int. Sci. 334 171
[16] Wang Z T, Aaron D N, Henderson Michael A, Lyubinetsky I 2012 Phys. Rev. Lett. 109 5
[17] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 57 3760]
[18] Asahi R, Morikawa T, Ohwakl T, Aoki K, Taga Y 2001 Science 293 369
[19] Valentin C D, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C, Giamello E 2007 Chem. Phys. 339 44
[20] Finazzi E, Valentin C D, Selloni A, Pacchioni G 2007 J. Phys. Chem. C 111 9275
[21] Lee J H, Hevia D F, Selloni A 2013 Phys. Rev. Lett. 110 5
[22] Sakthivel R, Ntho T, Witcomb M, Scurrell M S 2009 Catal. Lett. 130 341
[23] Subrahmanyam A, Biju K P, Rajesh P, Jagadeesh Kumar K, Raveendra Kiran M 2012 Sol. Energ. Mat. Sol. C 101 241
[24] Zhang M L, Yuan Z H, Ning T, Song J P, Zheng C 2013 Sensor. Actuat. B: Chem. 176 723
[25] Ramya S, Ruth Nithila S D, George R P, Nanda Gopala K D, Thinaharan C, Kamachi Mudali U 2013 Ceram. Int. 39 1695
[26] Mostefa-Sba H, Domenichini B, Bourgeois S 1999 Surf. Sci. 437 107
[27] Jia L C,Wu C C, Han S, Yao N, Li Y Y,Li Z B, Chi B 2011 J. Alloy. Compd. 509 6067.
[28] Yang X X, Cao C D, Erickson L, Hohn K, Maghirang R, Klabunde K 2009 Appl. Catal. B 91 657
[29] Kresse G, Furthermuller J 1996 Phys. Rev. B 54 11169
[30] Monkhorst H J, Pack J D 1998 Phys. Rev. B 13 5188
[31] Dudarev S L, Botton G A, Savarsov S Y 1998 Phys. Rev. B 57 1505
-
[1] He Y B, Tilocca A, Dulub O 2009 Nat. Mater. 24 585
[2] Peng L P, Xia Z C, Yang C Q 2012 Acta Phys. Sin. 61 127104 (in Chinese) [彭丽萍, 夏正才, 杨昌权 2012 61 127104]
[3] Diebold U 2003 Surf. Sci. Rep. 48 53
[4] Ganduglia-Pirovano M V, Hofmann A, Sauer J 2007 Surf. Sci. Rep. 62 219
[5] Pacchioni G 2008 J. Chem. Phys. 128 182505
[6] Besenbacher F, Lauritsen J V, Linderoth T R 2009 Surf. Sci. 603 1315
[7] Regan B O, Gratzel M 1991 Nature 353 737
[8] Fujishima A, Honda K 1972 Nature 238 37
[9] Chen Q, Cao H H 2004 Chin. Phys. 13 2121
[10] Muramatsu Y, Jin Q, Fujishima M, Tada H 2012 Appl. Catal. B: Environ. 119 74
[11] Sun Y B, Zhang X Q, Li G K, Cheng Z H 2012 Chin. Phys. B 21 047503
[12] Torrell M, Cunha L, Cavaleiro A, Alves E, Barradas N P, Vaz F 2012 Appl. Surf. Sci. 256 6536
[13] Zhang Z D, Hou Q Y, Li C, Zhao C W 2012 Acta Phys. Sin. 61 117102 (in Chinese) [张振铎, 侯清玉, 李聪, 赵春旺 2012 61 117102]
[14] Zheng S K, Wu G H, Liu L 2013 Acta Phys. Sin. 62 043102 (in Chinese) [郑树凯, 吴国浩, 刘磊 2013 62 043102]
[15] Liu G, Wang X W, Wang L Z, Chen Z G, Li F, Qing G, Cheng H M 2009 J. Col. Int. Sci. 334 171
[16] Wang Z T, Aaron D N, Henderson Michael A, Lyubinetsky I 2012 Phys. Rev. Lett. 109 5
[17] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 57 3760]
[18] Asahi R, Morikawa T, Ohwakl T, Aoki K, Taga Y 2001 Science 293 369
[19] Valentin C D, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C, Giamello E 2007 Chem. Phys. 339 44
[20] Finazzi E, Valentin C D, Selloni A, Pacchioni G 2007 J. Phys. Chem. C 111 9275
[21] Lee J H, Hevia D F, Selloni A 2013 Phys. Rev. Lett. 110 5
[22] Sakthivel R, Ntho T, Witcomb M, Scurrell M S 2009 Catal. Lett. 130 341
[23] Subrahmanyam A, Biju K P, Rajesh P, Jagadeesh Kumar K, Raveendra Kiran M 2012 Sol. Energ. Mat. Sol. C 101 241
[24] Zhang M L, Yuan Z H, Ning T, Song J P, Zheng C 2013 Sensor. Actuat. B: Chem. 176 723
[25] Ramya S, Ruth Nithila S D, George R P, Nanda Gopala K D, Thinaharan C, Kamachi Mudali U 2013 Ceram. Int. 39 1695
[26] Mostefa-Sba H, Domenichini B, Bourgeois S 1999 Surf. Sci. 437 107
[27] Jia L C,Wu C C, Han S, Yao N, Li Y Y,Li Z B, Chi B 2011 J. Alloy. Compd. 509 6067.
[28] Yang X X, Cao C D, Erickson L, Hohn K, Maghirang R, Klabunde K 2009 Appl. Catal. B 91 657
[29] Kresse G, Furthermuller J 1996 Phys. Rev. B 54 11169
[30] Monkhorst H J, Pack J D 1998 Phys. Rev. B 13 5188
[31] Dudarev S L, Botton G A, Savarsov S Y 1998 Phys. Rev. B 57 1505
计量
- 文章访问数: 6213
- PDF下载量: 820
- 被引次数: 0