-
The plasma sheath and wake flow of the hypersonic vehicle can affect the electromagnetic scattering characteristics of the reentry targets when they pass through the earth atmosphere at high speed. In order to study the similarity between the wake and the characteristic of the model launched at high velocity, the simulation experiments on the electromagnetic scattering characteristics of the spherical models made of Al2O3 and their wakes are carried out under the same binary scaling parameters in the ballistic range. The models are launched by the two-stage light-gas gun. The diameters of the models are 8 mm, 10 mm, 12 mm and 15 mm, respectively, while the pressures of the target chamber are 6.3 kPa, 5.0 kPa, 4.2 kPa and 3.3 kPa, respectively. The shock standoff distance is obtained by the shadow graph system. The electron density distribution of the wake is measured by the electron density measurement system. The RCS distribution of the wake and the model are acquired by X band monostatic radars, whose visual angle is 40. The results show that the shock standoff distance gradually increases with the increasing of the model dimension under the conditions of the same velocity and binary scaling parameters. The wake electron densities of different models are similar in their variation trends and orders of magnitude. The wake flow field of the different models with high velocity are the same as the results predicted by the double scale laws. The RCS distributions and total RCS of the wake of the models are different from each other. The electromagnetic scattering properties of the wake flow field of the various models do not conform with the predicted results obtained from the double scale law. The electromagnetic scattering energy is distributed over the regions of the models made up of aluminium oxide and the wake zones. There appears to be one center of the electromagnetic scattering energy in the area of the model coated with flow field, while several centers emerge in the region of the wake. The measuring signals of the RCS of the models show a random distribution, because the amplitude variation of the RCS and the frequency change of the RCS are random. The total RCS of the model increases with the increase of the model dimension, but the variation range of ripple frequency decreases with the increase of the model dimension.
-
Keywords:
- plasma /
- wake flow field /
- electromagnetic scattering /
- similarity
[1] Huang Y, Chen Z S, Xu J W 2008 Ship. Elec. Counter. 31 969 (in Chinese) [黄勇, 陈宗胜, 徐记伟 2008 舰船电子对抗 31 969]
[2] Wu J M, Gao B Q 1997 Chin. J. Rad. Sci. 12 26 (in Chinese) [吴建明, 高本庆 1997 电波科学学报 12 26]
[3] Zhu F, L Q Z 2008 Modern. Radar. 30 14 (in Chinese) [朱方, 吕琼之 2008 现代雷达 30 14]
[4] Zhou C, Zhang X K, Zhang C X, Wu G C 2014 Modern. Radar. 36 83 (in Chinese) [周超, 张小宽, 张晨新, 吴国成 2014 现代雷达 36 83]
[5] Niu J Y, Yu M 1999 Acta Mech. Sin. 31 434 (in Chinese) [牛家玉, 于明 1999 力学学报 31 434]
[6] Li Y 2014 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [李勇 2014 硕士学位论文 (南京:南京邮电大学)]
[7] Ma P, Shi A H, Yang Y J, Yu Z F, Bu S Q, Huang J 2015 High. Pow. Laser. Par. Beams 27 073201 (in Chinese) [马平, 石安华, 杨益兼, 于哲峰, 部绍清, 黄洁 2015 强激光与粒子束 27 073201]
[8] Martin J J 1966 Atomosph. Reentry 264
[9] Zhang B X 2013 M. S. Thesis (Xi'an: Xidian University) (in Chinese) [ 张宝贤 2013 硕士学位论文 (西安: 西安电子科技大学)]
[10] Wang W M, Zhang Y H, Jia M, Song H M, Chang L, Wu Y 2014 High Vol. Engineer. 40 2084 (in Chinese) [王卫民, 张艺瀚, 贾敏, 宋慧敏, 苌磊, 吴云 2014 高压电技术 40 2084]
[11] Yang L X, Shen D X, Shi W D 2013 Acta Phys. Sin. 62 104101 (in Chinese) [杨利霞, 沈丹华, 施卫东 2013 62 104101]
[12] Zhang D W 2013 J. Sichuan Univ. 44 119 (in Chinese) [张大跃 2013 四川大学学报 44 119]
[13] Chen M S, Kong M, Shi J J, Wu X L, Sha W 2011 Chin. J. Radio Sci. 26 216 (in Chinese) [陈明生, 孔勐, 石晶晶, 吴先良, 沙威 2011 电波科学学报 26 216]
[14] Wu X P, Shi J M, Du S M, Gao Y F, Dang K Z 2012 Chin. J. Vacu. Sci. Technol. 32 244 (in Chinese) [吴小坡, 时家明, 杜石明, 高永芳, 党可征 2012 真空科学与技术学报 32 244]
[15] Yu Z F, Bu S Q, Shi A H, Liang S C, Ma P, Huang J 2014 Acta Aerodyn. Sin. 32 57 (in Chinese) [于哲峰, 部绍清, 石安华, 梁世昌, 马平, 黄洁 2014 空气动力学学报 32 57]
[16] Richard A H 1992 AIAA 17th Aerospace Ground Testing Conference
[17] Landrum D B, Hayami R A 1994 AIAA 18th Aerospace Ground testing Conference
[18] Keidar M, Kim M, Boyd I D 2008 J. Space Rockets 45 445
[19] Savino R, Paterna D, M De S F 2010 Open Aero. Engin. J. 3 76
[20] Lin L, Wu B, Wu C K 2003 Plasma Sci. Technol. 5 1905
[21] Chadwick K M, Boyer D W, Andre S N 1996 AD-A317594 (New York: Calspan Corp Buffalo)
[22] Yu M 2000 Ph. D. Dissertation (Beijing: Institute of Mechanics, Chinese Academy of Science) (in Chinese) [于明 2000 博士学位论文(北京: 中国科学院力学研究所)]
[23] Jin M, Wei X, Wu Y, Zhang Y H, Yu X L 2015 Acta Phys. Sin. 64 205205 (in Chinese) [金铭, 韦笑, 吴洋, 张羽淮, 余西龙 2015 64 205205]
[24] Zeng X J, Shi A H, Huang J 2007 The Test and Measurement Technology on Aerophysics Ballistic Range (Beijing: National Defense Industry Press) pp3-17 (in Chinese) [曾学军, 石安华, 黄洁 2007 气动物理靶试验与测量技术(第1版) (北京: 国防工业出版社) 第317页]
-
[1] Huang Y, Chen Z S, Xu J W 2008 Ship. Elec. Counter. 31 969 (in Chinese) [黄勇, 陈宗胜, 徐记伟 2008 舰船电子对抗 31 969]
[2] Wu J M, Gao B Q 1997 Chin. J. Rad. Sci. 12 26 (in Chinese) [吴建明, 高本庆 1997 电波科学学报 12 26]
[3] Zhu F, L Q Z 2008 Modern. Radar. 30 14 (in Chinese) [朱方, 吕琼之 2008 现代雷达 30 14]
[4] Zhou C, Zhang X K, Zhang C X, Wu G C 2014 Modern. Radar. 36 83 (in Chinese) [周超, 张小宽, 张晨新, 吴国成 2014 现代雷达 36 83]
[5] Niu J Y, Yu M 1999 Acta Mech. Sin. 31 434 (in Chinese) [牛家玉, 于明 1999 力学学报 31 434]
[6] Li Y 2014 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [李勇 2014 硕士学位论文 (南京:南京邮电大学)]
[7] Ma P, Shi A H, Yang Y J, Yu Z F, Bu S Q, Huang J 2015 High. Pow. Laser. Par. Beams 27 073201 (in Chinese) [马平, 石安华, 杨益兼, 于哲峰, 部绍清, 黄洁 2015 强激光与粒子束 27 073201]
[8] Martin J J 1966 Atomosph. Reentry 264
[9] Zhang B X 2013 M. S. Thesis (Xi'an: Xidian University) (in Chinese) [ 张宝贤 2013 硕士学位论文 (西安: 西安电子科技大学)]
[10] Wang W M, Zhang Y H, Jia M, Song H M, Chang L, Wu Y 2014 High Vol. Engineer. 40 2084 (in Chinese) [王卫民, 张艺瀚, 贾敏, 宋慧敏, 苌磊, 吴云 2014 高压电技术 40 2084]
[11] Yang L X, Shen D X, Shi W D 2013 Acta Phys. Sin. 62 104101 (in Chinese) [杨利霞, 沈丹华, 施卫东 2013 62 104101]
[12] Zhang D W 2013 J. Sichuan Univ. 44 119 (in Chinese) [张大跃 2013 四川大学学报 44 119]
[13] Chen M S, Kong M, Shi J J, Wu X L, Sha W 2011 Chin. J. Radio Sci. 26 216 (in Chinese) [陈明生, 孔勐, 石晶晶, 吴先良, 沙威 2011 电波科学学报 26 216]
[14] Wu X P, Shi J M, Du S M, Gao Y F, Dang K Z 2012 Chin. J. Vacu. Sci. Technol. 32 244 (in Chinese) [吴小坡, 时家明, 杜石明, 高永芳, 党可征 2012 真空科学与技术学报 32 244]
[15] Yu Z F, Bu S Q, Shi A H, Liang S C, Ma P, Huang J 2014 Acta Aerodyn. Sin. 32 57 (in Chinese) [于哲峰, 部绍清, 石安华, 梁世昌, 马平, 黄洁 2014 空气动力学学报 32 57]
[16] Richard A H 1992 AIAA 17th Aerospace Ground Testing Conference
[17] Landrum D B, Hayami R A 1994 AIAA 18th Aerospace Ground testing Conference
[18] Keidar M, Kim M, Boyd I D 2008 J. Space Rockets 45 445
[19] Savino R, Paterna D, M De S F 2010 Open Aero. Engin. J. 3 76
[20] Lin L, Wu B, Wu C K 2003 Plasma Sci. Technol. 5 1905
[21] Chadwick K M, Boyer D W, Andre S N 1996 AD-A317594 (New York: Calspan Corp Buffalo)
[22] Yu M 2000 Ph. D. Dissertation (Beijing: Institute of Mechanics, Chinese Academy of Science) (in Chinese) [于明 2000 博士学位论文(北京: 中国科学院力学研究所)]
[23] Jin M, Wei X, Wu Y, Zhang Y H, Yu X L 2015 Acta Phys. Sin. 64 205205 (in Chinese) [金铭, 韦笑, 吴洋, 张羽淮, 余西龙 2015 64 205205]
[24] Zeng X J, Shi A H, Huang J 2007 The Test and Measurement Technology on Aerophysics Ballistic Range (Beijing: National Defense Industry Press) pp3-17 (in Chinese) [曾学军, 石安华, 黄洁 2007 气动物理靶试验与测量技术(第1版) (北京: 国防工业出版社) 第317页]
Catalog
Metrics
- Abstract views: 6309
- PDF Downloads: 229
- Cited By: 0