搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合场积分方程的半空间上方金属目标电磁散射特性高效分析

袁倩 周培阳 何姿 陈学文 丁大志

引用本文:
Citation:

基于混合场积分方程的半空间上方金属目标电磁散射特性高效分析

袁倩, 周培阳, 何姿, 陈学文, 丁大志

High-efficient analysis of metal target electromagnetics above the half-space based on mixed field integral equation

Yuan Qian, Zhou Pei-Yang, He Zi, Chen Xue-Wen, Ding Da-Zhi
PDF
HTML
导出引用
  • 研究一种可以高效求解半空间金属目标电磁散射积分方程方法, 电场积分方程适用于任意结构电磁问题分析, 但是生成的矩阵条件数大, 迭代求解收敛性差; 而磁场积分方程生成的矩阵条件数小, 迭代收敛性好, 但是仅能分析闭合结构问题, 本文采用了混合场积分方程方法, 同时具备电场积分方程的普适性与磁场积分方程的收敛性. 由于混合场积分方程中涉及格林函数的梯度项, 为了进一步加快计算效率, 本文引入了一种针对半空间格林函数的高效四维空间插值方法, 对组成半空间格林函数的索末菲积分进行列表和Lagrange插值, 以实现高效的迭代求解, 效率在传统混合场积分方程的基础上提高12.6倍. 数值结果表明, 该方法在保证精度的同时, 可以显著降低求解问题的时间.
    A new acceleration method is proposed for efficiently solving the problem of electromagnetic scattering from metal targets in half-space. The analysis of electromagnetic problems in any structure can be settled by the electric field integral equation. But the generated matrix condition number is large and the iterative solution has poor convergence. The number of the matrix condition generated by the magnetic field integral equation is small and iterative convergence is good. But only the closed structure problems can be worked out. The combined field integral equation is adopted because of the universality of the electric field integral equation and the convergence of the magnetic field integral equation. The gradient term of Green's function is involved in the integral equation of the mixed field. In order to further enhance the calculation efficiency, an efficient four-dimensional spatial interpolation method is introduced for half-space Green's function. Tabulation and lagrange interpolations are performed in the Sommerfeld integrals for the half-space Green's function. The improved efficiency can be 7.5 times higher than that of the traditional combined field integral equation(CFIE). Numerical results show that the computational time can be reduced significantly by the proposed method with encouraging accuracy.
      通信作者: 何姿, zihe@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62071231, 61931021, 61890541)、江苏省自然科学基金(批准号: BK20211571)和南京理工大学自主科研专项计划 (批准号: 30921011207)资助的课题
      Corresponding author: He Zi, zihe@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071231, 61931021, 61890541), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20211571), and the Fundamental Research Funds for the Central Universities (Grant No. 30921011207)
    [1]

    Man L, Wei X, Xiao Z H 2017 International Applied Computational Electromagnetics Society Symposium Suzhou, China, August 1–4, 2017 p1

    [2]

    李冰, 马萌晨, 雷明珠 2017 66 050301Google Scholar

    Li B, Ma M C, Lei M Z 2017 Acta Phys. Sin. 66 050301Google Scholar

    [3]

    向敏, 牛立强, 武沛羽, 谢拥军, 石宋华, 严杰 2019 电子技术应用 45 1

    Xiang M, Niu L Q, Wu P Y, Xie Y J, Shi S H, Yan J 2019 Appl. Electr. Tech. 45 1

    [4]

    聂在平, 陈涌频 2017 中国科学: 信息科学 47 545

    Nie Z P, Chen Y P 2017 Chin. Sci. (Informationis) 47 545 (in Chinese)

    [5]

    Yuan H, Wang C, Li Y, Liu N, Cui G 2016 International Symposium on Antennas, Propagation and EM Theory Guilin, China, Oct. 18–21, 2016 p75

    [6]

    魏仪文 2016 博士学位论文 (西安: 西安电子科技大学)

    Wei Y W 2016 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)

    [7]

    邵芸, 宫华泽, 田维, 张庆君, 王国军, 卞小林, 张婷婷, 张风丽, 李坤, 刘致曲, 倪崇 2021 遥感学报 25 323Google Scholar

    Shao Y, Gong H Z, Tian W, Zhang Q J, Wang G J, Bian X L, Zhang T T, Zhang F L, Li K, Liu Z Q, Ni C 2021 J. Remote. Sens. 25 323Google Scholar

    [8]

    綦鑫 2019博士学位论文(成都: 电子科技大学)

    Qi X 2019 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China)(in Chinese)

    [9]

    Zhang R, Jia P, Hu L 2018 IEEE International Conference on Computational Electromagnetics Chendu, China, March 26–28, 2018 p1

    [10]

    Li B C, Zhang Q Z, Liu H L 2021 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Zhengzhou, China, April 16–19, 2021 p54

    [11]

    Wang Y, Wang J, Yao L 2020 IEEE J. Multiscale and Multiphys. Comput. Techn. 5 273Google Scholar

    [12]

    Zhang Y, Wang P, Li W, Yang S 2019 International Conference on Electromagnetics in Advanced Applications Granada, Spain, Sept 9–13, 2019 p0780

    [13]

    徐润汶, 郭立新, 范天奇 2013 62 170301Google Scholar

    Xu R W, Guo L X, Fan T Q 2013 Acta Phys. Sin. 62 170301Google Scholar

    [14]

    陈涌频, 聂在平, 胡俊 2008 电子学报 3 562Google Scholar

    Chen Y P, Nie Z P, Hu J 2008 Acta Electron. Sin. 3 562Google Scholar

    [15]

    Sommerfeld A 1909 Ann. Phys. 28 665

    [16]

    Weyl H 1919 Ann. Phys. 365 481Google Scholar

    [17]

    Siegel M, King R 1971 IEEE Trans. Antennas. Propag. 19 477Google Scholar

    [18]

    Xu X B, Butler C 1986 IEEE Trans. Antennas. Propag. 34 880Google Scholar

    [19]

    Stratton I A 1941 Electromagnetic Theory (New York: Mc Graw-Hill Book Company)

    [20]

    Michalski K A, Zheng D 1990 IEEE Trans. Antennas. Propag. 38 335Google Scholar

    [21]

    Vitebskiy S, Carin L 1995 IEEE Trans. Antennas. Propag. 43 1303

    [22]

    Geng N, Sullivan A, Carin L 2000 IEEE Trans. Geosci. Remote Sens. 38 1561Google Scholar

    [23]

    Yang J J, Chow Y L, Fang D G 1991 IEEE Trans. Antennas. Propag. 138 319

    [24]

    Aksun M I 1996 IEEE Trans. Microw. Theory Techn. 44 651Google Scholar

    [25]

    Yuan M T, Sarkar T K, Salazar-Palma M 2006 IEEE Trans. Microw. Theory Techn. 5 1025

    [26]

    Zhuang L, Zhu G Q, Zhang Y H 2007 IEEE Microw. Wireless Compon. Lett. 49 1337

    [27]

    潘锦, 文希理 1996 地球 s1 400

    Pan J, Wen X L 1996 Chin. J. Geophys. s1 400 (in Chinese)

    [28]

    胡俊, 聂在平 1998 电子学报 3 126Google Scholar

    Hu J, Nie Z P 1998 Acta Electron. Sin. 3 126Google Scholar

    [29]

    Song Z, Zhou H, Zheng K, Hu J, Li W, Hong W 2013 IEEE Antennas. Propag. Mag. 55 92Google Scholar

    [30]

    Wu B, Sheng X A 2015 IEEE Trans. Antennas. Propag. 63 3727Google Scholar

    [31]

    Burke G, Miller E 1984 IEEE Trans. Antennas. Propag. 32 1040Google Scholar

    [32]

    Eskelinen P 2002 IEEE Aerosp. Electr. Syst. Mag. 17 41Google Scholar

    [33]

    Chen J Y, Kishk A A, Glisson A W 2000 Electromagnetics 20 1Google Scholar

    [34]

    罗万 2016 博士学位论文 (成都: 电子科技大学)

    Luo W 2016 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [35]

    胡云琴 2012 博士学位论文 (南京: 南京理工大学)

    Hu Y Q 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [36]

    张民, 李乐伟, 李良超, 吴振森 2008 中国科学 2 298

    Zhang M, Li L W, Li L C, Wu Z S 2008 Chin. Sci. 2 298

  • 图 1  半空间上方金属目标示意图

    Fig. 1.  Schematic diagram of the metal target above the half space.

    图 2  外部等效模型示意图

    Fig. 2.  Schematic diagram of external equivalent model.

    图 3  RCS计算误差和运行时间随插值间隔变化的折线图

    Fig. 3.  Line chart of RCS calculation error and running time for different interpolation intervals.

    图 4  二维插值表示意图, 图中插值点在二维插值表$ (\rho , z) $中取值

    Fig. 4.  Schematic diagram of two-dimensional interpolation table, the interpolation points in the figure are taken in the two-dimensional interpolation table $ (\rho , z) $.

    图 5  四维插值表示意图, 图中插值点在四维插值表$(x-x', $$ y-y', z-z', z+z')$中取值

    Fig. 5.  Schematic diagram of the 4D interpolation table, the interpolation points in the figure are taken in the four-dimensional interpolation table $(x-x', y-y', z-z', z+z')$

    图 6  金属立方体模型示意图

    Fig. 6.  Schematic diagram for the metal cube model.

    图 7  金属立方体双站RCS仿真结果对比图

    Fig. 7.  RCS comparison among the proposed method, the traditional CFIE method and the FEKO for the PEC block model.

    图 8  金属slicy模型示意图

    Fig. 8.  Schematic diagram for the metal slicy model.

    图 9  金属slicy模型双站RCS仿真结果对比图

    Fig. 9.  RCS comparison between the proposed method and the traditional CFIE method for the PEC slicy model.

    图 10  金属船模型示意图

    Fig. 10.  Schematic diagram for the metal ship model.

    图 11  金属船双站RCS仿真结果对比图

    Fig. 11.  RCS comparison between the proposed method and the traditional CFIE method for the PEC ship model.

    表 1  本文方法与FEKO、传统CFIE的计算资源比较

    Table 1.  Computational comparison among the proposed method, FEKO and the traditional CFIE.

    模型未知量计算时间/s 计算内存/MB
    FEKO传统CFIE本文方法FEKO传统CFIE本文方法
    立方体11682173175601008 1229.01120.11251.9
    slicy75187093204432533.6545.8557.0
    1401325411868414761721.31613.61715.9
    下载: 导出CSV
    Baidu
  • [1]

    Man L, Wei X, Xiao Z H 2017 International Applied Computational Electromagnetics Society Symposium Suzhou, China, August 1–4, 2017 p1

    [2]

    李冰, 马萌晨, 雷明珠 2017 66 050301Google Scholar

    Li B, Ma M C, Lei M Z 2017 Acta Phys. Sin. 66 050301Google Scholar

    [3]

    向敏, 牛立强, 武沛羽, 谢拥军, 石宋华, 严杰 2019 电子技术应用 45 1

    Xiang M, Niu L Q, Wu P Y, Xie Y J, Shi S H, Yan J 2019 Appl. Electr. Tech. 45 1

    [4]

    聂在平, 陈涌频 2017 中国科学: 信息科学 47 545

    Nie Z P, Chen Y P 2017 Chin. Sci. (Informationis) 47 545 (in Chinese)

    [5]

    Yuan H, Wang C, Li Y, Liu N, Cui G 2016 International Symposium on Antennas, Propagation and EM Theory Guilin, China, Oct. 18–21, 2016 p75

    [6]

    魏仪文 2016 博士学位论文 (西安: 西安电子科技大学)

    Wei Y W 2016 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)

    [7]

    邵芸, 宫华泽, 田维, 张庆君, 王国军, 卞小林, 张婷婷, 张风丽, 李坤, 刘致曲, 倪崇 2021 遥感学报 25 323Google Scholar

    Shao Y, Gong H Z, Tian W, Zhang Q J, Wang G J, Bian X L, Zhang T T, Zhang F L, Li K, Liu Z Q, Ni C 2021 J. Remote. Sens. 25 323Google Scholar

    [8]

    綦鑫 2019博士学位论文(成都: 电子科技大学)

    Qi X 2019 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China)(in Chinese)

    [9]

    Zhang R, Jia P, Hu L 2018 IEEE International Conference on Computational Electromagnetics Chendu, China, March 26–28, 2018 p1

    [10]

    Li B C, Zhang Q Z, Liu H L 2021 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Zhengzhou, China, April 16–19, 2021 p54

    [11]

    Wang Y, Wang J, Yao L 2020 IEEE J. Multiscale and Multiphys. Comput. Techn. 5 273Google Scholar

    [12]

    Zhang Y, Wang P, Li W, Yang S 2019 International Conference on Electromagnetics in Advanced Applications Granada, Spain, Sept 9–13, 2019 p0780

    [13]

    徐润汶, 郭立新, 范天奇 2013 62 170301Google Scholar

    Xu R W, Guo L X, Fan T Q 2013 Acta Phys. Sin. 62 170301Google Scholar

    [14]

    陈涌频, 聂在平, 胡俊 2008 电子学报 3 562Google Scholar

    Chen Y P, Nie Z P, Hu J 2008 Acta Electron. Sin. 3 562Google Scholar

    [15]

    Sommerfeld A 1909 Ann. Phys. 28 665

    [16]

    Weyl H 1919 Ann. Phys. 365 481Google Scholar

    [17]

    Siegel M, King R 1971 IEEE Trans. Antennas. Propag. 19 477Google Scholar

    [18]

    Xu X B, Butler C 1986 IEEE Trans. Antennas. Propag. 34 880Google Scholar

    [19]

    Stratton I A 1941 Electromagnetic Theory (New York: Mc Graw-Hill Book Company)

    [20]

    Michalski K A, Zheng D 1990 IEEE Trans. Antennas. Propag. 38 335Google Scholar

    [21]

    Vitebskiy S, Carin L 1995 IEEE Trans. Antennas. Propag. 43 1303

    [22]

    Geng N, Sullivan A, Carin L 2000 IEEE Trans. Geosci. Remote Sens. 38 1561Google Scholar

    [23]

    Yang J J, Chow Y L, Fang D G 1991 IEEE Trans. Antennas. Propag. 138 319

    [24]

    Aksun M I 1996 IEEE Trans. Microw. Theory Techn. 44 651Google Scholar

    [25]

    Yuan M T, Sarkar T K, Salazar-Palma M 2006 IEEE Trans. Microw. Theory Techn. 5 1025

    [26]

    Zhuang L, Zhu G Q, Zhang Y H 2007 IEEE Microw. Wireless Compon. Lett. 49 1337

    [27]

    潘锦, 文希理 1996 地球 s1 400

    Pan J, Wen X L 1996 Chin. J. Geophys. s1 400 (in Chinese)

    [28]

    胡俊, 聂在平 1998 电子学报 3 126Google Scholar

    Hu J, Nie Z P 1998 Acta Electron. Sin. 3 126Google Scholar

    [29]

    Song Z, Zhou H, Zheng K, Hu J, Li W, Hong W 2013 IEEE Antennas. Propag. Mag. 55 92Google Scholar

    [30]

    Wu B, Sheng X A 2015 IEEE Trans. Antennas. Propag. 63 3727Google Scholar

    [31]

    Burke G, Miller E 1984 IEEE Trans. Antennas. Propag. 32 1040Google Scholar

    [32]

    Eskelinen P 2002 IEEE Aerosp. Electr. Syst. Mag. 17 41Google Scholar

    [33]

    Chen J Y, Kishk A A, Glisson A W 2000 Electromagnetics 20 1Google Scholar

    [34]

    罗万 2016 博士学位论文 (成都: 电子科技大学)

    Luo W 2016 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [35]

    胡云琴 2012 博士学位论文 (南京: 南京理工大学)

    Hu Y Q 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [36]

    张民, 李乐伟, 李良超, 吴振森 2008 中国科学 2 298

    Zhang M, Li L W, Li L C, Wu Z S 2008 Chin. Sci. 2 298

  • [1] 马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁. 高速模型尾迹流场及其电磁散射特性相似性实验研究.  , 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [2] 范天奇, 郭立新, 金健, 孟肖. 含泡沫面元模型的海面电磁散射研究.  , 2014, 63(21): 214104. doi: 10.7498/aps.63.214104
    [3] 徐常伟, 朱峰, 刘丽娜, 牛大鹏. 群论在对称结构电磁散射问题中的应用.  , 2013, 62(16): 164102. doi: 10.7498/aps.62.164102
    [4] 王仲根, 孙玉发, 王国华. 应用改进的特征基函数法和自适应交叉近似算法快速分析导体目标电磁散射特性.  , 2013, 62(20): 204102. doi: 10.7498/aps.62.204102
    [5] 徐润汶, 郭立新, 范天奇. 有限元/边界积分方法在海面及其上方弹体目标电磁散射中的应用.  , 2013, 62(17): 170301. doi: 10.7498/aps.62.170301
    [6] 王龙, 钟易成, 张堃元. 金属/介质涂覆的S形扩压器电磁散射特性.  , 2012, 61(23): 234101. doi: 10.7498/aps.61.234101
    [7] 张宇, 张晓娟, 方广有. 大尺度分层介质粗糙面电磁散射的特性研究.  , 2012, 61(18): 184203. doi: 10.7498/aps.61.184203
    [8] 姜文正, 袁业立, 运华, 张彦敏. 海面微波散射场多普勒谱特性研究.  , 2012, 61(12): 124213. doi: 10.7498/aps.61.124213
    [9] 王运华, 张彦敏, 郭立新. 两相邻有限长圆柱的复合电磁散射研究.  , 2011, 60(2): 021102. doi: 10.7498/aps.60.021102
    [10] 张宇, 杨曦, 苟铭江, 史庆藩. 电磁散射问题的两种反演方法研究.  , 2010, 59(6): 3905-3911. doi: 10.7498/aps.59.3905
    [11] 梁玉, 郭立新. 气泡/泡沫覆盖粗糙海面电磁散射的修正双尺度法研究.  , 2009, 58(9): 6158-6166. doi: 10.7498/aps.58.6158
    [12] 任新成, 郭立新. 具有二维fBm特征的分层介质粗糙面电磁散射的特性研究.  , 2009, 58(3): 1627-1634. doi: 10.7498/aps.58.1627
    [13] 王运华, 张彦敏, 郭立新. 平面上方二维介质目标对高斯波束的电磁散射研究.  , 2008, 57(9): 5529-5536. doi: 10.7498/aps.57.5529
    [14] 李海英, 吴振森. 二维高斯波束对多层球粒子电磁散射的解析解.  , 2008, 57(2): 833-838. doi: 10.7498/aps.57.833
    [15] 王 蕊, 郭立新, 秦三团, 吴振森. 粗糙海面及其上方导体目标复合电磁散射的混合算法研究.  , 2008, 57(6): 3473-3480. doi: 10.7498/aps.57.3473
    [16] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析.  , 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [17] 代少玉, 吴振森, 徐仰彬. 用基于Daubechies尺度函数的时域多分辨分析计算电磁散射.  , 2007, 56(2): 786-790. doi: 10.7498/aps.56.786
    [18] 王运华, 郭立新, 吴振森. 改进的二维分形模型在海面电磁散射中的应用.  , 2006, 55(10): 5191-5199. doi: 10.7498/aps.55.5191
    [19] 郭立新, 王运华, 吴振森. 双尺度动态分形粗糙海面的电磁散射及多普勒谱研究.  , 2005, 54(1): 96-101. doi: 10.7498/aps.54.96
    [20] 聂在平, 王浩刚. 含腔电大尺寸导体目标电磁散射的一体化数值模拟.  , 2003, 52(12): 3035-3042. doi: 10.7498/aps.52.3035
计量
  • 文章访问数:  4562
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 修回日期:  2022-03-15
  • 上网日期:  2022-05-29
  • 刊出日期:  2022-06-05

/

返回文章
返回
Baidu
map