Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation

Wu Kong-Ping Sun Chang-Xu Ma Wen-Fei Wang Jie Wei Wei Cai Jun Chen Chang-Zhao Ren Bin Sang Li-Wen Liao Mei-Yong

Citation:

Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation

Wu Kong-Ping, Sun Chang-Xu, Ma Wen-Fei, Wang Jie, Wei Wei, Cai Jun, Chen Chang-Zhao, Ren Bin, Sang Li-Wen, Liao Mei-Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Diamond is regarded as one of the most promising semiconductor materials used for high power devices because of its superior physical and electrical properties, such as wide bandgap, high breakdown electric field, high mobility, and high thermal conductivity. Highpower diamond devices are now receiving much attention. In particular, Schottky diode based on a metal/diamond junction has promising applications, and high breakdown voltage has been achieved, though unfortunately its forward resistance is high. In this paper, the first principles calculations are performed to study the electronic structure of interface and the Schottky barrier height of Al-diamond interface. The projection of the density of states on the atomic orbitals of the interface atoms reveals that the typical Al-induced gap states are associated with a smooth density of states in the bulk diamond band gap region, and these gap states are found to be localized within three atom layers. At the same time, electronic charge transfer makes the Fermi level upgrade on the side of diamond. Besides, the typical Al-induced gap state model gives a simple picture about what determines Schottky barrier height at Al-diamond interface, by assuming an ideal, defect-free and laterally homogeneous Schottky interface in which the only interaction comes from the decay of the electron wave function from the metal into the semiconductor, which in turn induces electronic charges to be rearranged in the region close to the interface. As for the electronic charge transfer, this potential shift can be extracted by subtracting the superimposed planar or macroscopically averaged electrostatic potentials of the Al and diamond surfaces (at frozen atomic positions), from the planar or macroscopically averaged potential of the relaxed Al-diamond interface. The electronic charge transfer suggests that the formation of an interface should be associated with the formation of new chemical bonds and substantial rearrangements of the electron charge density. Especially, we obtain the Schottky barrier height of 1.03 by the first principle, which is in good agreement with the results from phenomenological model and experiment. The research results in this paper can provide a theoretical basis for the research of the metal diamond Schottky junction diode, and can also give a theoretical reference for the research of the metal-semiconductor highpower device based on diamond material.
      Corresponding author: Wu Kong-Ping, Wu.Kongping@nims.go.jp;Meiyong.Liao@nims.go.jp ; Liao Mei-Yong, Wu.Kongping@nims.go.jp;Meiyong.Liao@nims.go.jp
    • Funds: Project supported by the University Outstanding Talent Cultivation Program of Anhui Province, China (Grant No. gxfxZD2016077), the China Postdoctoral Science Foundation (Grant No. 2016M601993), and China Scholarship Council (Grant No. 201508340047).
    [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Crawford K G, Cao L, Qi D C, Tallaire A, Limiti E, Verona C, Wee A T S, Moran D A J 2016 Appl. Phys. Lett. 108 042103

    [3]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Device Lett. 33 1471

    [4]

    Volpe P N, Muret P, Pernot J, Omnes F, Teraji T, Koide Y, Jomard F, Planson D, Brosselard P, Dheilly N, Vergne B, Scharnholz S 2010 Appl. Phys. Lett. 97 223501

    [5]

    Huang W, Chow T P, Yang J, Butler J E 2004 Int. J. High Speed Electron. Syst. 14 872

    [6]

    Umezawa H, Kato Y, Shikata S 2013 Appl. Phys. Express 6 011302

    [7]

    Kumaresan H R, Umezawa H, Shikata S 2010 Diamond Relat. Mat. 19 1324

    [8]

    Ohmagari S, Teraji T, Koide Y 2011 J. Appl. Phys. 110 056105

    [9]

    Pereira L, Rodrigues A, Gomes H, Pereira E 2001 Diamond Relat. Mater. 10 615

    [10]

    Kawashima H, Noguchi H, Matsumoto T, Kato H, Ogura M, Makino T, Shirai S, Takeuchi D, Yamasaki S 2015 Appl. Phys. Express 8 104103

    [11]

    Makino T, Tanimoto S, Hayashi Y, Kato H, Tokuda N, Ogura M, Takeuchi D, Oyama K, Ohashi H, Okushi H, Yamasaki S 2009 Appl. Phys. Lett. 94 262101

    [12]

    Ueda K, Kawamoto K, Asano H 2014 Jpn. J. Appl. Phys. 53 853

    [13]

    Teraji T, Koide Y, Ito T 2009 Phys. Status Solidi (RRL) 3 211

    [14]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [15]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [16]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [17]

    Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906

    [18]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106

    [19]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, ngyn J G 2006 J. Chem. Phys. 124 154709

    [20]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, ngyn J G 2006 J. Chem. Phys. 125 249901

    [21]

    Silvestri L, Ladouceur F 2016 J. Phys. Chem. Lett. 7 1534

    [22]

    Methfessel M, Hennig D, Scheffler M 1992 Phys. Rev. B 46 4816

    [23]

    Fall C J, Binggeli N, Baldereschi A 1999 J. Phys. Condens. Matter 11 2689

    [24]

    Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408

    [25]

    Fall C J, Binggeli N, Baldereschi A 1999 J. Phys. Condens. Matter 11 2689

    [26]

    Wu K P, Qi J, Peng B, Tang K, Ye J D, Zhu S M, Gu S L 2015 Acta Phys. Sin. 64 187304 (in Chinese) [吴孔平, 齐剑, 彭波, 汤琨, 叶建东, 朱顺明, 顾书林 2015 64 187304]

    [27]

    Singh-Miller N E, Marzari N 2009 Phys. Rev. B 80 235407

    [28]

    Gebreselasie D, Benesh G A 1997 J. Phys. Condens. Matter 9 8359

    [29]

    Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351

    [30]

    Hong S, Chou M Y 1997 Phys. Rev. B 55 9975

    [31]

    Steckel J A, Kresse G, Hafner J 2002 Phys. Rev. B 66 155406

    [32]

    Yu Y, Gu C Z, Xu L F, Zhang S B 2004 Phys. Rev. B 70 125423

    [33]

    van der Weide J, Zhang Z, Baumann P K, Wensell M G, Bernholc J, Nemanich R J 1994 Phys. Rev. B 50 5803

    [34]

    Mnch W 2004 Electronic Properties of Semiconductor Interfaces (Springer Series in Surface Sciences) (Berlin: Springer) pp147-160

    [35]

    Mnch W 1987 Phys. Rev. Lett. 58 1260

    [36]

    Kawarada H 1996 Surf. Sci. Rep. 26 205

    [37]

    Mnch W 1994 Europhys. Lett. 27 479

    [38]

    von Windheim J A, Venkatesan V, Malta D M, Das K 1993 J. Electron. Mater. 22 391

  • [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Crawford K G, Cao L, Qi D C, Tallaire A, Limiti E, Verona C, Wee A T S, Moran D A J 2016 Appl. Phys. Lett. 108 042103

    [3]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Device Lett. 33 1471

    [4]

    Volpe P N, Muret P, Pernot J, Omnes F, Teraji T, Koide Y, Jomard F, Planson D, Brosselard P, Dheilly N, Vergne B, Scharnholz S 2010 Appl. Phys. Lett. 97 223501

    [5]

    Huang W, Chow T P, Yang J, Butler J E 2004 Int. J. High Speed Electron. Syst. 14 872

    [6]

    Umezawa H, Kato Y, Shikata S 2013 Appl. Phys. Express 6 011302

    [7]

    Kumaresan H R, Umezawa H, Shikata S 2010 Diamond Relat. Mat. 19 1324

    [8]

    Ohmagari S, Teraji T, Koide Y 2011 J. Appl. Phys. 110 056105

    [9]

    Pereira L, Rodrigues A, Gomes H, Pereira E 2001 Diamond Relat. Mater. 10 615

    [10]

    Kawashima H, Noguchi H, Matsumoto T, Kato H, Ogura M, Makino T, Shirai S, Takeuchi D, Yamasaki S 2015 Appl. Phys. Express 8 104103

    [11]

    Makino T, Tanimoto S, Hayashi Y, Kato H, Tokuda N, Ogura M, Takeuchi D, Oyama K, Ohashi H, Okushi H, Yamasaki S 2009 Appl. Phys. Lett. 94 262101

    [12]

    Ueda K, Kawamoto K, Asano H 2014 Jpn. J. Appl. Phys. 53 853

    [13]

    Teraji T, Koide Y, Ito T 2009 Phys. Status Solidi (RRL) 3 211

    [14]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [15]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [16]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [17]

    Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906

    [18]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106

    [19]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, ngyn J G 2006 J. Chem. Phys. 124 154709

    [20]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, ngyn J G 2006 J. Chem. Phys. 125 249901

    [21]

    Silvestri L, Ladouceur F 2016 J. Phys. Chem. Lett. 7 1534

    [22]

    Methfessel M, Hennig D, Scheffler M 1992 Phys. Rev. B 46 4816

    [23]

    Fall C J, Binggeli N, Baldereschi A 1999 J. Phys. Condens. Matter 11 2689

    [24]

    Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408

    [25]

    Fall C J, Binggeli N, Baldereschi A 1999 J. Phys. Condens. Matter 11 2689

    [26]

    Wu K P, Qi J, Peng B, Tang K, Ye J D, Zhu S M, Gu S L 2015 Acta Phys. Sin. 64 187304 (in Chinese) [吴孔平, 齐剑, 彭波, 汤琨, 叶建东, 朱顺明, 顾书林 2015 64 187304]

    [27]

    Singh-Miller N E, Marzari N 2009 Phys. Rev. B 80 235407

    [28]

    Gebreselasie D, Benesh G A 1997 J. Phys. Condens. Matter 9 8359

    [29]

    Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351

    [30]

    Hong S, Chou M Y 1997 Phys. Rev. B 55 9975

    [31]

    Steckel J A, Kresse G, Hafner J 2002 Phys. Rev. B 66 155406

    [32]

    Yu Y, Gu C Z, Xu L F, Zhang S B 2004 Phys. Rev. B 70 125423

    [33]

    van der Weide J, Zhang Z, Baumann P K, Wensell M G, Bernholc J, Nemanich R J 1994 Phys. Rev. B 50 5803

    [34]

    Mnch W 2004 Electronic Properties of Semiconductor Interfaces (Springer Series in Surface Sciences) (Berlin: Springer) pp147-160

    [35]

    Mnch W 1987 Phys. Rev. Lett. 58 1260

    [36]

    Kawarada H 1996 Surf. Sci. Rep. 26 205

    [37]

    Mnch W 1994 Europhys. Lett. 27 479

    [38]

    von Windheim J A, Venkatesan V, Malta D M, Das K 1993 J. Electron. Mater. 22 391

  • [1] Liu Dong-Jing, Hu Zhi-Liang, Zhou Fu, Wang Peng-Bo, Wang Zhen-Dong, Li Tao. Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation. Acta Physica Sinica, 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [2] Li Jing-Hui, Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Electrical contact properties of 2D metal-semiconductor heterojunctions composed of different phases of NbS2 and GeS2. Acta Physica Sinica, 2024, 73(13): 137102. doi: 10.7498/aps.73.20240530
    [3] Tang Jia-Xin, Li Zhan-Hai, Deng Xiao-Qing, Zhang Zhen-Hua. Electrical contact characteristics and regulatory effects of GaN/VSe2 van der Waals heterojunction. Acta Physica Sinica, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [4] Hao Guo-Qiang, Zhang Rui, Zhang Wen-Jing, Chen Na, Ye Xiao-Jun, Li Hong-Bo. Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping. Acta Physica Sinica, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [5] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [6] Ding Hua-Jun, Xue Zhong-Ying, Wei Xing, Zhang Bo. Effects of ultra-thin aluminium interlayer on Schottky barrier parameters of NiGe/n-type Ge Schottky barrier diode. Acta Physica Sinica, 2022, 71(20): 207302. doi: 10.7498/aps.71.20220320
    [7] Zhu Ping, Zhang Qiang, Gou Hua-Song, Wang Ping-Ping, Shao Pu-Zhen, Kobayashi Equo, Wu Gao-Hui. First-principles calculation of diamond/Al interface properties and study of interface reaction. Acta Physica Sinica, 2021, 70(17): 178101. doi: 10.7498/aps.70.20210341
    [8] Zhang Fang, Jia Li-Qun, Sun Xian-Ting, Dai Xian-Qi, Huang Qi-Xiang, Li Wei. Tuning Schottky barrier in graphene/InSe van der Waals heterostructures by electric field. Acta Physica Sinica, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [9] Xu Feng1\2, Yu Guo-Hao, Deng Xu-Guang, Li Jun-Shuai, Zhang Li, Song Liang, Fan Ya-Ming, Zhang Bao-Shun. Current transport mechanism of Schottky contact of Pt/Au/n-InGaN. Acta Physica Sinica, 2018, 67(21): 217802. doi: 10.7498/aps.67.20181191
    [10] Tao Peng-Cheng, Huang Yan, Zhou Xiao-Hao, Chen Xiao-Shuang, Lu Wei. First principles investigation of the tuning in metal-MoS2 interface induced by doping. Acta Physica Sinica, 2017, 66(11): 118201. doi: 10.7498/aps.66.118201
    [11] Jian Xiao-Gang, Zhang Yun-Hua. The effect of temperature on the mechanical properties of the diamond coating at the film-substrate interface. Acta Physica Sinica, 2015, 64(4): 046701. doi: 10.7498/aps.64.046701
    [12] Wu Kong-Ping, Qi Jian, Peng Bo, Tang Kun, Ye Jian-Dong, Zhu Shun-Ming, Gu Shu-Lin. Polarization properties of wurtzite structure Zn1-xMgxO and band offset at Zn0.75Mg0.25O/ZnO interfaces: A GGA+U investigation. Acta Physica Sinica, 2015, 64(18): 187304. doi: 10.7498/aps.64.187304
    [13] Shi Da-Wei, Wu Mei-Ling, Yang Chang-Ping, Ren Chun-Ling, Xiao Hai-Bo, Wang Kai-Ying. AC properties of Pr0.7Ca0.3MnO3 ceramics. Acta Physica Sinica, 2013, 62(2): 026201. doi: 10.7498/aps.62.026201
    [14] Zhao Shou-Ren, Huang Zhi-Peng, Sun Lei, Sun Peng-Chao, Zhang Chuan-Jun, Wu Yun-Hua, Cao Hong, Wang Shan-Li, Chu Jun-Hao. A detailed study of the effect of Schottky barrier on the dark current density-voltage characteristics of CdS/CdTe solar cells. Acta Physica Sinica, 2013, 62(16): 168801. doi: 10.7498/aps.62.168801
    [15] Wu Mei-Ling, Shi Da-Wei, Kan Zhi-Lan, Wang Rui-Long, Ding Yi-Min, Xiao Hai-Bo, Yang Chang-Ping. Comparison bwtween intrinsic and interfacial electrical pulse induced resistance effects in La0.5Ca0.5MnO3 ceramics. Acta Physica Sinica, 2013, 62(20): 207302. doi: 10.7498/aps.62.207302
    [16] Xiu Ming-Xia, Ren Jun-Feng, Wang Yu-Mei, Yuan Xiao-Bo, Hu Gui-Chao. Effect of Schottky barrier on spin injection in ferromagnetic/organic semiconductor structure. Acta Physica Sinica, 2010, 59(12): 8856-8861. doi: 10.7498/aps.59.8856
    [17] Li Ping-Jian, Zhang Wen-Jing, Zhang Qi-Feng, Wu Jin-Lei. The influence of contact metal in carbon nanotube transistor. Acta Physica Sinica, 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [18] LI HONG-WEI, WANG TAI-HONG. THE INFLUENCE OF InAs QUANTUM DOTS ON THE TRANSPORT PROPERTIES OF SCHOTTKY DIODE. Acta Physica Sinica, 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
    [19] KANG JIAN, XIAO CHANG-YONG, XIONG YAN-YUN, FENG KE-AN, LIN ZHANG-DA. THE EFFECT OF ATOMIC OF HYDROGEN IN THE INITIAL PROCEDURE OF DIAMOND HETEROEPITAXY ON Si AND THE INTERFACE BETWEEN DIAMOND AND Si. Acta Physica Sinica, 1999, 48(11): 2104-2109. doi: 10.7498/aps.48.2104
    [20] LI BAI-LI, GUO YI. . Acta Physica Sinica, 1995, 44(1): 133-136. doi: 10.7498/aps.44.133
Metrics
  • Abstract views:  6383
  • PDF Downloads:  435
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2017
  • Accepted Date:  25 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回
Baidu
map