Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Current transport mechanism of Schottky contact of Pt/Au/n-InGaN

Xu Feng1\2 Yu Guo-Hao Deng Xu-Guang Li Jun-Shuai Zhang Li Song Liang Fan Ya-Ming Zhang Bao-Shun

Citation:

Current transport mechanism of Schottky contact of Pt/Au/n-InGaN

Xu Feng1\2, Yu Guo-Hao, Deng Xu-Guang, Li Jun-Shuai, Zhang Li, Song Liang, Fan Ya-Ming, Zhang Bao-Shun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The Pt/Au Schottky contacts to InGaN samples with different background carrier concentrations are fabricated. The crystal qualities of InGaN samples are characterized by X-ray diffraction (XRD) and atomic force microscope (AFM), and the correlation between threading dislocation density of InGaN and growth temperature is further clarified. The full width at half maximum (FWHM) values of the InGaN (0002) XRD rocking curves show that the density of threading dislocations in InGaN, which can seriously deteriorate InGaN crystal quality and surface morphology, decreases rapidly with increasing growth temperature. The Hall measurements show that the background carrier concentration of InGaN increases by two orders of magnitude as growth temperature decreases from 750 to 700℃, which is due to a reduced ammonia decomposition efficiency leading to the presence of high-density donor-type nitrogen vacancy (VN) defects at lower temperature. Therefore, combining the studies of XRD, AFM and Hall, it can be concluded that the higher growth temperature is favorable for realizing the InGaN film with low density of VN defects and threading dislocations for fabricating high-quality Schottky contacts, and then the barrier characteristics and current transport mechanism of Pt/Au/n-InGaN Schottky contact are investigated by current-voltage measurements and theory analysis based on the thermionic emission (TE) model and thermionic field emission (TFE) model. The results show that Schottky characteristics for InGaN with different carrier concentrations manifest obvious differences. It is noted that the high carrier concentration leads to the Schottky barrier height and the ideality factor obtained by TE model are quite different from that by TFE model due to the presence of high density of VN defects. This discrepancy suggests that the VN defects lead to the formation of the tunneling current and further reduced Schottky barrier height. Consequently, the presence of tunneling current results in the increasing of total transport current, which means that the defects-assisted tunneling transport and TE constitute the current transport mechanism in the Schottky. However, the fitted results obtained by TE and TFE models are almost identical for the InGaN with lower carrier concentration, indicating that TE is the dominant current transport mechanism. The above studies prove that the Pt/Au/n-InGaN Schottky contact fabricated using low background carrier concentration shows better Schottky characteristics. Thus, the properly designed growth parameters can effectively suppress defects-assisted tunneling transport, which is crucial to fabricating high-quality Schottky devices.
      Corresponding author: Xu Feng1\2, fxu2018@sinano.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161324), the Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 2018K008C), the National Natural Science Foundation of China (Grant No. 61704185), and the Key Research and Development Program of Jiangsu Province, China (Grant Nos. BE2015111, BE2016084).
    [1]

    Green M A, Emer Y K, Hishikaw A Y, Warta W, Dunlop E D 2013 Prog. Photovolta 21 1

    [2]

    Piprek J, Römer F, Witzigmann B 2015 Appl. Phys. Lett. 106 101101

    [3]

    Aseev P, Rodriguez P, Gómez V J, Alvi N, Mánuel J M, Morales F M, Jiménez J J, García R, Senichev A, Lienau C, Calleja E, Nötzel R 2015 Appl. Phys. Lett. 106 072102

    [4]

    Tang F, Zhu T, Oehler F, Fu W Y, Griffiths J T, Massabuau F C P, Kappers M J, Martin T L, Bagot P A J, Moody M P, Oliver R A 2015 Appl. Phys. Lett. 106 072104

    [5]

    O'donnell K P, Fernandez-Torrente I, Edwards P R, Martinet R 2004 J. Cryst. Growth 269 100

    [6]

    Davydov V Y, Klochikhin A A, Emtsev V V, Kurdyukov D, Ivanov S V, Vekshin V A, Bechstedt F, Furthmller J, Aderhold J, Graul J, Mudryi A V, Harima H, Akihiro H, Yamamoto A, Haller E E 2002 Phys. Status Solidi 234 787

    [7]

    Li Y, Huang Y R, Lai Y H 2009 IEEE J. Sel. Top. Quant. 15 1128

    [8]

    Fabien M, Doolittle W A 2014 Sol. Energ Mat. Sol. C. 130 354

    [9]

    Yamamoto A, Sugita K, Bhuiyan A G, Hashimoto A, Narita N 2013 Materials for Renewable and Sustainable Energy 2 1

    [10]

    Li Y, Chen H, Chen K J 2011 IEEE Electron Dev. Lett. 32 303

    [11]

    Lin Y S, Ma K J, Yang C C, Weirich T E 2003 J. Mater. Sci-Mater. El. 14 49

    [12]

    Li S X, Yu K M, WU J, Jones R E, Walukiewicz W, Agerlll J W, Shan W, Haller E E, Lu H, Schaff W J 2005 Phys. Rev. B. 71 161201R

    [13]

    Jang J S, Kim D, Seong T Y 2006 J. Appl. Phys. 99 073704

    [14]

    Lin Y J, Lin W X, Lee C T, Hang H C 2006 JPN J. Appl. Phys. 45 2505

    [15]

    Wang X F, Shao Z G, Chen D J, Lu H, Zhang R, Zhen Y D 2014 Chin. Phys. Lett. 31 057303

    [16]

    Vegard L 1921 Physics 5 17

    [17]

    Wuu D, Wu H, Chen S, Tsai T, Zheng X, Horng R 2009 J. Cryst. Growth. 311 3063

    [18]

    Oliver R A, Kappers M J, Humphreys C J, Briggs G A D 2005 J. Appl. Phys. 97 013707

    [19]

    Liu W, Soh C B, Chen P, Chua S J 2004 J. Cryst. Growth. 268 509

    [20]

    Soh C B, Liu W, Chua S J, Tripathy S, Chi D Z 2004 J. Cryst. Growth. 268 478

    [21]

    Lee C R, Noh S K, Leem J Y, Son S J, Lee I H 1997 J. Cryst. Growth. 182 11

    [22]

    Mira S, Collazo R, Dalmau R, Sitar Z 2007 Phys. Stat. Sol. 4 2260

    [23]

    Wu X H, Elsass C R, Abare A, Mack M, Keller S, Petroff P M, DenBaars S P, Speck J S, Rosner S J 1998 Appl. Phys. Lett. 72 692

    [24]

    Yu L S, XING Q J, Qiao D J, Lau S S, Redwing J, LIU Q Z 1998 J. Appl. Phys. 84 2099

    [25]

    Tsao C C, Wang Y, Weiner J, Bagnato V S 1996 J. Appl. Phys. 80 8

    [26]

    Morkoç H 1999 Nitride Semiconductor and Devices (Vol. 1) (New York: Springer-Verlag Berlin Heidelberg) pp196-203

    [27]

    Hashizume T, Kotani J, Hasegawa H 2004 Appl. Phys. Lett. 84 4884

  • [1]

    Green M A, Emer Y K, Hishikaw A Y, Warta W, Dunlop E D 2013 Prog. Photovolta 21 1

    [2]

    Piprek J, Römer F, Witzigmann B 2015 Appl. Phys. Lett. 106 101101

    [3]

    Aseev P, Rodriguez P, Gómez V J, Alvi N, Mánuel J M, Morales F M, Jiménez J J, García R, Senichev A, Lienau C, Calleja E, Nötzel R 2015 Appl. Phys. Lett. 106 072102

    [4]

    Tang F, Zhu T, Oehler F, Fu W Y, Griffiths J T, Massabuau F C P, Kappers M J, Martin T L, Bagot P A J, Moody M P, Oliver R A 2015 Appl. Phys. Lett. 106 072104

    [5]

    O'donnell K P, Fernandez-Torrente I, Edwards P R, Martinet R 2004 J. Cryst. Growth 269 100

    [6]

    Davydov V Y, Klochikhin A A, Emtsev V V, Kurdyukov D, Ivanov S V, Vekshin V A, Bechstedt F, Furthmller J, Aderhold J, Graul J, Mudryi A V, Harima H, Akihiro H, Yamamoto A, Haller E E 2002 Phys. Status Solidi 234 787

    [7]

    Li Y, Huang Y R, Lai Y H 2009 IEEE J. Sel. Top. Quant. 15 1128

    [8]

    Fabien M, Doolittle W A 2014 Sol. Energ Mat. Sol. C. 130 354

    [9]

    Yamamoto A, Sugita K, Bhuiyan A G, Hashimoto A, Narita N 2013 Materials for Renewable and Sustainable Energy 2 1

    [10]

    Li Y, Chen H, Chen K J 2011 IEEE Electron Dev. Lett. 32 303

    [11]

    Lin Y S, Ma K J, Yang C C, Weirich T E 2003 J. Mater. Sci-Mater. El. 14 49

    [12]

    Li S X, Yu K M, WU J, Jones R E, Walukiewicz W, Agerlll J W, Shan W, Haller E E, Lu H, Schaff W J 2005 Phys. Rev. B. 71 161201R

    [13]

    Jang J S, Kim D, Seong T Y 2006 J. Appl. Phys. 99 073704

    [14]

    Lin Y J, Lin W X, Lee C T, Hang H C 2006 JPN J. Appl. Phys. 45 2505

    [15]

    Wang X F, Shao Z G, Chen D J, Lu H, Zhang R, Zhen Y D 2014 Chin. Phys. Lett. 31 057303

    [16]

    Vegard L 1921 Physics 5 17

    [17]

    Wuu D, Wu H, Chen S, Tsai T, Zheng X, Horng R 2009 J. Cryst. Growth. 311 3063

    [18]

    Oliver R A, Kappers M J, Humphreys C J, Briggs G A D 2005 J. Appl. Phys. 97 013707

    [19]

    Liu W, Soh C B, Chen P, Chua S J 2004 J. Cryst. Growth. 268 509

    [20]

    Soh C B, Liu W, Chua S J, Tripathy S, Chi D Z 2004 J. Cryst. Growth. 268 478

    [21]

    Lee C R, Noh S K, Leem J Y, Son S J, Lee I H 1997 J. Cryst. Growth. 182 11

    [22]

    Mira S, Collazo R, Dalmau R, Sitar Z 2007 Phys. Stat. Sol. 4 2260

    [23]

    Wu X H, Elsass C R, Abare A, Mack M, Keller S, Petroff P M, DenBaars S P, Speck J S, Rosner S J 1998 Appl. Phys. Lett. 72 692

    [24]

    Yu L S, XING Q J, Qiao D J, Lau S S, Redwing J, LIU Q Z 1998 J. Appl. Phys. 84 2099

    [25]

    Tsao C C, Wang Y, Weiner J, Bagnato V S 1996 J. Appl. Phys. 80 8

    [26]

    Morkoç H 1999 Nitride Semiconductor and Devices (Vol. 1) (New York: Springer-Verlag Berlin Heidelberg) pp196-203

    [27]

    Hashizume T, Kotani J, Hasegawa H 2004 Appl. Phys. Lett. 84 4884

  • [1] Li Han-Xi, Wang De-Zhen. Simulation of effect of thermionic emission on magnetized sheath near target plate of tungsten divertor. Acta Physica Sinica, 2023, 72(15): 159401. doi: 10.7498/aps.72.20230276
    [2] Hao Guo-Qiang, Zhang Rui, Zhang Wen-Jing, Chen Na, Ye Xiao-Jun, Li Hong-Bo. Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping. Acta Physica Sinica, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [3] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] Ding Hua-Jun, Xue Zhong-Ying, Wei Xing, Zhang Bo. Effects of ultra-thin aluminium interlayer on Schottky barrier parameters of NiGe/n-type Ge Schottky barrier diode. Acta Physica Sinica, 2022, 71(20): 207302. doi: 10.7498/aps.71.20220320
    [5] Zhang Hong-Yan, Bao Li-Hong, Chao Luo-Meng, Zhao Feng-Qi, Liu Zi-Zhong. Optical absorption and thermionic emission mechanism of multi-functional La1–x Srx B6 hexaborides. Acta Physica Sinica, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [6] Zhang Guan-Jie, Yang Hao, Zhang Nan. Research progress of the investigation of intrinsic and extrinsic origin of piezoelectric materials by X-ray diffraction. Acta Physica Sinica, 2020, 69(12): 127711. doi: 10.7498/aps.69.20200301
    [7] Zhang Fang, Jia Li-Qun, Sun Xian-Ting, Dai Xian-Qi, Huang Qi-Xiang, Li Wei. Tuning Schottky barrier in graphene/InSe van der Waals heterostructures by electric field. Acta Physica Sinica, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [8] Huang Hao, Zhang Kan, Wu Ming, Li Hu, Wang Min-Juan, Zhang Shu-Ming, Chen Jian-Hong, Wen Mao. Comparison between axial residual stresses measured by Raman spectroscopy and X-ray diffraction in SiC fiber reinforced titanium matrix composite. Acta Physica Sinica, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [9] Wu Kong-Ping, Sun Chang-Xu, Ma Wen-Fei, Wang Jie, Wei Wei, Cai Jun, Chen Chang-Zhao, Ren Bin, Sang Li-Wen, Liao Mei-Yong. Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation. Acta Physica Sinica, 2017, 66(8): 088102. doi: 10.7498/aps.66.088102
    [10] Shi Da-Wei, Wu Mei-Ling, Yang Chang-Ping, Ren Chun-Ling, Xiao Hai-Bo, Wang Kai-Ying. AC properties of Pr0.7Ca0.3MnO3 ceramics. Acta Physica Sinica, 2013, 62(2): 026201. doi: 10.7498/aps.62.026201
    [11] Zhao Shou-Ren, Huang Zhi-Peng, Sun Lei, Sun Peng-Chao, Zhang Chuan-Jun, Wu Yun-Hua, Cao Hong, Wang Shan-Li, Chu Jun-Hao. A detailed study of the effect of Schottky barrier on the dark current density-voltage characteristics of CdS/CdTe solar cells. Acta Physica Sinica, 2013, 62(16): 168801. doi: 10.7498/aps.62.168801
    [12] Peng Kai, Liu Da-Gang. Numerical simulation and study of three-dimensional thermal field emission. Acta Physica Sinica, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [13] Xu Xiao-Ming, Miao Wei, Tao Kun. Direct method of determining the lattice parameters of a phase from X-ray diffraction pattern of multi-phase. Acta Physica Sinica, 2011, 60(8): 086101. doi: 10.7498/aps.60.086101
    [14] Xiu Ming-Xia, Ren Jun-Feng, Wang Yu-Mei, Yuan Xiao-Bo, Hu Gui-Chao. Effect of Schottky barrier on spin injection in ferromagnetic/organic semiconductor structure. Acta Physica Sinica, 2010, 59(12): 8856-8861. doi: 10.7498/aps.59.8856
    [15] Li Yong-Hua, Liu Chang-Sheng, Meng Fan-Ling, Wang Yu-Ming, Zheng Wei-Tao. X-ray photoelectron spectroscopy analysis of the effect of thickness on the transformation temperature of NiTi alloy thin films. Acta Physica Sinica, 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [16] Li Hong-Tao, Luo Yi, Xi Guang-Yi, Wang Lai, Jiang Yang, Zhao Wei, Han Yan-Jun, Hao Zhi-Biao, Sun Chang-Zheng. Thickness measurement of GaN films by X-ray diffraction. Acta Physica Sinica, 2008, 57(11): 7119-7125. doi: 10.7498/aps.57.7119
    [17] Ming Bao-Quan, Wang Jin-Feng, Zang Guo-Zhong, Wang Chun-Ming, Gai Zhi-Gang, Du Juan, Zheng Li-Mei. X-ray diffraction and phase transition analysis for (K, Na)NbO3-based lead-free piezoelectric ceramics. Acta Physica Sinica, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [18] Tan Guo-Tai, Chen Zheng-Hao. XRD analysis on lattice structure of La1-xTexMnO3. Acta Physica Sinica, 2007, 56(3): 1702-1706. doi: 10.7498/aps.56.1702
    [19] Qin Pei, Lou Yu-Wan, Yang Chuan-Zheng, Xia Bao-Jia. New computing methods and programs for separating multipe-broadening effects of X-ray diffraction lines. Acta Physica Sinica, 2006, 55(3): 1325-1335. doi: 10.7498/aps.55.1325
    [20] LI HONG-WEI, WANG TAI-HONG. THE INFLUENCE OF InAs QUANTUM DOTS ON THE TRANSPORT PROPERTIES OF SCHOTTKY DIODE. Acta Physica Sinica, 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
Metrics
  • Abstract views:  6190
  • PDF Downloads:  113
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2018
  • Accepted Date:  02 September 2018
  • Published Online:  05 November 2018

/

返回文章
返回
Baidu
map