-
NiGe/n-Ge Schottky barrier height is modulated by Ni/n-Ge reaction with 1 nm Al as an intermediate layer. The series resistance, barrier height and ideal factor of Schottky diodes are extracted by the forward I-V method, Cheung method and Norde method, respectively. Comparing with Ni/n-Ge SBD, the introduction of 1 nm Al insertion layer between Ni and Ge substrates can effectively reduce the barrier height and maintain stability between 350 ℃ and 450 ℃.
-
Keywords:
- aluminum /
- Schottky barrier /
- germanium /
- nickel
[1] Maeda T, Ikeda K, Nakaharai S, Tezuka T, Sugiyama N, Moriyama Y, Takagi S 2005 IEEE Electron. Dev. Lett. 26 102Google Scholar
[2] Oh J, Majhi P, Lee H, Yoo O, Banerjee S, Kang C Y, Yang J W, Harris R, Tseng H H, Jammy R 2007 IEEE Electron Dev. Lett. 28 1044Google Scholar
[3] Wager J F, Robertson J 2011 J. Appl. Phys. 109 094501Google Scholar
[4] Lin J, Roy A M, Nainani A, Sun Y, Saraswat K C 2011 Appl. Phys. Lett. 98 092113Google Scholar
[5] Lieten R R, Degroote S, Kuijk M, Borghs G 2008 Appl. Phys. Lett. 92 022106Google Scholar
[6] Liu G Y, Zhang M, Xue Z Y, Hu X D, Wang T B, Han X W, Di Z F 2019 J. Alloys Compd. 794 218Google Scholar
[7] Kobayashi M, Kinoshita A, Saraswat K, Wong H S P, Nishi Y 2009 J. Appl. Phys. 105 023702Google Scholar
[8] Lin L, Robertson J, Clark S J 2011 Microelectron. Eng. 88 1461Google Scholar
[9] Gaudet S, Detavernier C, Lavoie C, Desjardins P 2006 J. Appl. Phys. 100 034306Google Scholar
[10] Zhang Q C, Wu N, Osipowicz T, Bera L K, Zhu C 2005 Jpn. J. Appl. Phys. 44 1389Google Scholar
[11] Zhu S Y, Yu M B, Lo G Q, Lwong D L 2007 Appl. Phys. Lett. 91 051905Google Scholar
[12] Khurelbaatar Z, Kil Y H, Shim K H, Cho H, Kim M J, Lee S N, Jeong J C, Hong H, Choi C J 2016 Superlattice. Microst. 91 306Google Scholar
[13] Rhoderick E H, Williams R H 1988 Metal-Semiconductor Contacts (Oxford: Clarendon Press) p78
[14] Farag A A M, Osiris W G, Yahia I S 2011 Synth. Met. 161 1805Google Scholar
[15] Kim H Y, Lee K, McEvoy N, Yim C, Duesberg G S 2013 Nano Lett. 13 2182Google Scholar
[16] Tung R T 1992 Phys. Rev. B 45 23Google Scholar
[17] Mridha S, Basak D 2008 Appl. Phys. Lett. 92 142111Google Scholar
[18] Cheung S K, Cheung N W 1986 Appl. Phys. Lett. 49 85Google Scholar
[19] Chot T 1981 Status Solidi A Appl. Res. 66 43Google Scholar
[20] Monch W 1999 J. Vac. Sci. Technol. B 17 1867Google Scholar
[21] Tung R T 1992 Phys. Rev. B 45 13509Google Scholar
[22] Zhu S, Nakajima A 2005 Jpn. J. Appl. Phys. 44 753Google Scholar
[23] Nemouchi F 2006 Microelectron. Eng. 83 2101Google Scholar
[24] Yong K, Ping Y X, Liu W, Yang J, Yu W, Xue Z Y, Wei X, Wu A M, Zhang B 2020 Appl. Phys. Express. 13 015505Google Scholar
[25] Nygren S, Johansson S 1990 J. Appl. Phys. 68 1050Google Scholar
[26] Marshall E D 1985 Mater. Res. Soc. Symp. Proc. 47 161Google Scholar
[27] Zhang B, Yu W, Zhao Q T, Mussler L, Jin D, Buca B, Hollaender M, Zhang M, Wang X, Mantl S 2011 Appl. Phys. Lett. 98 252101Google Scholar
[28] Ohta A, Fujioka T, Murakami H, Higashi S, Miyazaki S 2011 Jpn. J. Appl. Phys. 50 10Google Scholar
[29] Liew S L, Balakrisnan B, Ho S, Thomas O, Chi D Z 2007 J. Electrochem. Soc. 154 9Google Scholar
[30] Richter K W, Hiebl K 2003 Appl. Phys. Lett. 83 497Google Scholar
[31] Sinha M, Lee T P, Lohani A, Mhaisalkar S, Chor E F, Yeo Y C, 2009 J. Electrochem. Soc. 156 4Google Scholar
[32] Ghosh M, Pitale S, Singh S G, Manasawala H, Karki V, Singh M, Singh K, Patra G D, Sen S 2021 Mat. Sci. Semicon. Proc. 121 105350Google Scholar
-
表 1 不同方法提取的 Ni/Ge 和 Ni/Al/Ge SBDs 的肖特基势垒参数
Table 1. Schottky barrier parameters of Ni/Ge and Ni/Al/Ge SBDs extracted by different methods.
样品 肖特基势垒高度 ${\phi }_{\mathrm{B} }$/eV 理想因子 $ n $ 串联电阻 RS/Ω 正向I-V 法 Cheung法 Norde法 Cheung法 正向I-V 法 Cheung法 Norde法 350 ℃ Ni/n-Ge 0.38 0.35 0.48 1.06 1.41 43.43 44.52 Ni/Al/n-Ge 0.35 0.23 0.39 1.55 1.3 211.58 367.23 400 ℃ Ni/n-Ge 0.38 0.33 0.46 1.07 1.04 39.42 46.86 Ni/Al/n-Ge 0.35 0.25 0.39 1.34 0.85 138.58 122.67 450 ℃ Ni/n-Ge 0.36 0.3 0.42 1.13 0.92 78.71 110.72 Ni/Al/n-Ge 0.32 0.17 0.34 1.81 1.54 252.07 150.56 -
[1] Maeda T, Ikeda K, Nakaharai S, Tezuka T, Sugiyama N, Moriyama Y, Takagi S 2005 IEEE Electron. Dev. Lett. 26 102Google Scholar
[2] Oh J, Majhi P, Lee H, Yoo O, Banerjee S, Kang C Y, Yang J W, Harris R, Tseng H H, Jammy R 2007 IEEE Electron Dev. Lett. 28 1044Google Scholar
[3] Wager J F, Robertson J 2011 J. Appl. Phys. 109 094501Google Scholar
[4] Lin J, Roy A M, Nainani A, Sun Y, Saraswat K C 2011 Appl. Phys. Lett. 98 092113Google Scholar
[5] Lieten R R, Degroote S, Kuijk M, Borghs G 2008 Appl. Phys. Lett. 92 022106Google Scholar
[6] Liu G Y, Zhang M, Xue Z Y, Hu X D, Wang T B, Han X W, Di Z F 2019 J. Alloys Compd. 794 218Google Scholar
[7] Kobayashi M, Kinoshita A, Saraswat K, Wong H S P, Nishi Y 2009 J. Appl. Phys. 105 023702Google Scholar
[8] Lin L, Robertson J, Clark S J 2011 Microelectron. Eng. 88 1461Google Scholar
[9] Gaudet S, Detavernier C, Lavoie C, Desjardins P 2006 J. Appl. Phys. 100 034306Google Scholar
[10] Zhang Q C, Wu N, Osipowicz T, Bera L K, Zhu C 2005 Jpn. J. Appl. Phys. 44 1389Google Scholar
[11] Zhu S Y, Yu M B, Lo G Q, Lwong D L 2007 Appl. Phys. Lett. 91 051905Google Scholar
[12] Khurelbaatar Z, Kil Y H, Shim K H, Cho H, Kim M J, Lee S N, Jeong J C, Hong H, Choi C J 2016 Superlattice. Microst. 91 306Google Scholar
[13] Rhoderick E H, Williams R H 1988 Metal-Semiconductor Contacts (Oxford: Clarendon Press) p78
[14] Farag A A M, Osiris W G, Yahia I S 2011 Synth. Met. 161 1805Google Scholar
[15] Kim H Y, Lee K, McEvoy N, Yim C, Duesberg G S 2013 Nano Lett. 13 2182Google Scholar
[16] Tung R T 1992 Phys. Rev. B 45 23Google Scholar
[17] Mridha S, Basak D 2008 Appl. Phys. Lett. 92 142111Google Scholar
[18] Cheung S K, Cheung N W 1986 Appl. Phys. Lett. 49 85Google Scholar
[19] Chot T 1981 Status Solidi A Appl. Res. 66 43Google Scholar
[20] Monch W 1999 J. Vac. Sci. Technol. B 17 1867Google Scholar
[21] Tung R T 1992 Phys. Rev. B 45 13509Google Scholar
[22] Zhu S, Nakajima A 2005 Jpn. J. Appl. Phys. 44 753Google Scholar
[23] Nemouchi F 2006 Microelectron. Eng. 83 2101Google Scholar
[24] Yong K, Ping Y X, Liu W, Yang J, Yu W, Xue Z Y, Wei X, Wu A M, Zhang B 2020 Appl. Phys. Express. 13 015505Google Scholar
[25] Nygren S, Johansson S 1990 J. Appl. Phys. 68 1050Google Scholar
[26] Marshall E D 1985 Mater. Res. Soc. Symp. Proc. 47 161Google Scholar
[27] Zhang B, Yu W, Zhao Q T, Mussler L, Jin D, Buca B, Hollaender M, Zhang M, Wang X, Mantl S 2011 Appl. Phys. Lett. 98 252101Google Scholar
[28] Ohta A, Fujioka T, Murakami H, Higashi S, Miyazaki S 2011 Jpn. J. Appl. Phys. 50 10Google Scholar
[29] Liew S L, Balakrisnan B, Ho S, Thomas O, Chi D Z 2007 J. Electrochem. Soc. 154 9Google Scholar
[30] Richter K W, Hiebl K 2003 Appl. Phys. Lett. 83 497Google Scholar
[31] Sinha M, Lee T P, Lohani A, Mhaisalkar S, Chor E F, Yeo Y C, 2009 J. Electrochem. Soc. 156 4Google Scholar
[32] Ghosh M, Pitale S, Singh S G, Manasawala H, Karki V, Singh M, Singh K, Patra G D, Sen S 2021 Mat. Sci. Semicon. Proc. 121 105350Google Scholar
Catalog
Metrics
- Abstract views: 3958
- PDF Downloads: 45
- Cited By: 0