搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性

姚仲瑜 孙丽 潘孟美 孙书娟 刘汉军

引用本文:
Citation:

第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性

姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军

First-principles study on half-metallic ferromagnetism of half-Heusler alloys VLiBi and CrLiBi

Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan, Liu Han-Jun
PDF
导出引用
  • 构建只含有一种过渡金属元素的half-Heusler合金VLiBi和CrLiBi.采用第一性原理的全势能线性缀加平面波方法计算half-Heusler合金VLiBi和CrLiBi的电子结构.计算结果表明,VLiBi和CrLiBi是半金属性铁磁体,它们的半金属隙分别是0.25 eV和0.46 eV,晶胞总磁矩分别为3.00 μB和4.00 μB.磁性计算结果显示,晶胞总磁矩主要来源于V和Cr的原子磁矩,Li和Bi的原子磁矩较弱,而且Bi的原子磁矩为负值.利用平均场近似方法计算合金的居里温度TC,VLiBi和CrLiBi的居里温度(TC)的估算值分别为1401 K和1551 K.使晶格常数在±10%的范围内变化,分别计算VLiBi和CrLiBi的电子结构.计算研究表明,晶格常数在-5.6%–10%和-6.9%–10%的范围内变化时VLiBi和CrLiBi仍具有半金属性,并且晶胞总磁矩稳定于3.00 μB和4.00 μB.采用局域密度近似(LDA)+U(电子库仑相互作用项)的方法计算VLiBi和CrLiBi的电子结构,当U的取值增大到5 eV时VLiBi和CrLiBi仍保持半金属性.此外,采用考虑自旋-轨道耦合(spin-orbit coupling,SOC)效应的广义梯度近似(GGA)+SOC方法计算VLiBi和CrLiBi的电子结构,计算结果显示有微弱的自旋向下能带穿过费米能级,此时VLiBi和CrLiBi在费米面处的自旋极化率分别为98.8%和94.3%,它们的晶胞总磁矩分别为3.03 μB和4.04 μB.VLiBi的半金属性几乎不受SOC效应的影响,而CrLiBi在费米面处仍有较高的自旋极化率.
    The hypothetical half-Heusler alloys VLiBi and CrLiBi containing only one transition metal element are constructed. The electronic structure and magnetic properties of VLiBi and CrLiBi are investigated by using the first-principles full-potential linearized augmented plane wave method based on density functional theory. The spin-polarized calculations of electronic structure for the half-Heusler alloys VLiBi and CrLiBi are performed. The calculation results reveal that VLiBi and CrLiBi are half-metallic ferromagnets with the half-metallic gaps of 0.25 eV and 0.46 eV and the total magnetic moments of 3.00 μB and 4.00 μB per formula unit, respectively. The total magnetic moments mainly originate from the magnetic moment on V or Cr atom. Li and Bi have small atomic magnetic moments, where the atomic magnetic moment of Bi is negative. The mean field approximation method is used to estimate the Curie temperatures of the alloys. The calculated results show that the values of Curie temperature for VLiBi and CrLiBi are 1401 K and 1551 K, respectively. To study the robustness of the half-metallicity with the change of lattice constant, the electronic structures of VLiBi and CrLiBi are also calculated under their lattice constant changing from-10% to +10% relative to the equilibrium lattice constant. It is found that the VLiBi and CrLiBi can maintain their half-metallicity and retain their total magnetic moments of 3.00 μB and 4.00 μB per formula unit even when their lattice constants change from-5.6% to 10.0% and from-6.9% to 10.0%, respectively. To discuss the effect of strongly correlated interaction on the half-metallicity, the electronic structure of VLiBi and CrLiBi are calculated by the LDA+U method with U for V-3d and Cr-3d orbital. The calculation results indicate that VLiBi and CrLiBi can keep their half-metallicity and integer total magnetic moments of 3.00 μB and 4.00 μB when the value of U reaches to 5 eV. Also, the electronic structure of VLiBi and CrLiBi are recalculated by the GGA+SOC method. The calculated results show that 1) there are some spin-down bands crossing the Fermi level, 2) the spin polarizations of VLiBi and CrLiBi at the Fermi level are 98.8% and 94.3%, respectively, and 3) total magnetic moments of VLiBi and CrLiBi are 3.03 μB and 4.04 μB per formula unit, respectively. The spin-orbit coupling has a weak effect on the half-metallic of half-Heusler alloy VLiBi and the spin polarization is still high for the half-Heusler alloy CrLiBi. The half-Heusler alloys VLiBi and CrLiBi may be useful in spintronics and other applications.
      通信作者: 姚仲瑜, yzy@hainnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11364014)资助的课题.
      Corresponding author: Yao Zhong-Yu, yzy@hainnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11364014).
    [1]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [2]

    Yanase A, Siratori K 1984 J. Phys. Soc. Jpn. 53 312

    [3]

    Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211

    [4]

    Yao Z, Zhang Y S, Yao K L 2012 Appl. Phys. Lett. 101 062402

    [5]

    Block T, Carey M J, Gurney B A, Jepsen O 2004 Phys. Rev. B 70 205114

    [6]

    Yao Z, Gong S, Fu J, Zhang Y S, Yao K L 2010 Solid State Commun. 150 2239

    [7]

    Galanakis I, Mavropoulos P 2007 J. Phys.: Condens. Matter 19 315213

    [8]

    Picozzi S, Continenza A, Freeman A J 2002 Phys. Rev. B 66 094421

    [9]

    Galanakis I, Mavropoulos P 2003 Phys. Rev. B 67 104417

    [10]

    Yao K L, Gao G Y, Liu Z L, Zhu L 2005 Solid State Commun. 133 301

    [11]

    Xie W H, Xu Y Q, Liu B G, Pettifor D G 2003 Phys. Rev. Lett. 91 037204

    [12]

    Droghetti A, Baadji N, Sanvito S 2009 Phys. Rev. B 80 235310

    [13]

    Gao G Y, Xu B, Chen Z Y, Yao K L 2013 J. Alloys Compd. 546 119

    [14]

    Kato H, Okuda T, Okimoto Y, Tomioka Y, Takenoya Y, Ohkubo A, Kawasaki M, Tokuraa Y 2002 Appl. Phys. Lett. 81 328

    [15]

    Zhao J J, Qi X, Liu E K, Zhu W, Qian J F, Li G J, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 047108 (in Chinese)[赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒 2011 60 047108]

    [16]

    Soulen Jr. R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85

    [17]

    Yu D B, Feng J F, Du Y S, Han X F, Yan H, Ying Q M, Zhang G C 2005 Acta Phys. Sin. 54 4903 (in Chinese)[于郭波, 丰家峰, 杜永胜, 韩秀峰, 严辉, 应启明, 张国成 2005 54 4903]

    [18]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [19]

    Otto M J, van Woerden R A M, van der Valk P J, Wijngaard J, van Bruggen C F, Haas C, Buschow K H J 1989 J. Phys.: Condens. Matter 1 2341

    [20]

    Zhang M, Dai X, Hu H, Liu G, Cui Y, Liu Z, Chen J, Wang J, Wu G 2003 J. Phys.: Condens. Matter 15 7891

    [21]

    Zhang M, Liu Z H, Hu H N, Liu G D, Cui Y T, Wu G H, Bruck E, de Boer F R, Li Y X 2004 J. Appl. Phys. 95 7219

    [22]

    de Groot R A, van der Kraan A M, Buschow K H J 1986 J. Magn. Magn. Mater. 61 330

    [23]

    Xu B, Zhang M 2011 J. Magn. Magn. Mater. 323 939

    [24]

    Yao Z Y, Sun L, Pan M M, Sun S J 2016 Acta Phys. Sin. 65 127501 (in Chinese)[姚仲瑜, 孙丽, 潘孟美, 孙书娟 2016 65 127501]

    [25]

    Lin S Y, Yang X B, Zhao Y J 2014 J. Magn. Magn. Mater. 350 119

    [26]

    Chen J, Gao G Y, Yao K L, Song M H 2011 J. Alloys Compd. 509 10172

    [27]

    Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 1990 Comput. Phys. Commun. 59 399

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [29]

    Huang K, Han R Q 1988 Solid State Physics (Beijing: Higher Education Press) pp426, 427 (in Chinese)[黄昆, 韩汝琦, 1988 固体物理学 (北京: 高等教育出版社)第426, 427页]

    [30]

    Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T, Sawatzky G A 1993 Phys. Rev. B 48 16929

    [31]

    Kahal L, Ferhat M 2010 J. Appl. Phys. 107 043910

    [32]

    Gao G Y, Yao K L 2012 J. Appl. Phys. 111 113703

  • [1]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [2]

    Yanase A, Siratori K 1984 J. Phys. Soc. Jpn. 53 312

    [3]

    Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211

    [4]

    Yao Z, Zhang Y S, Yao K L 2012 Appl. Phys. Lett. 101 062402

    [5]

    Block T, Carey M J, Gurney B A, Jepsen O 2004 Phys. Rev. B 70 205114

    [6]

    Yao Z, Gong S, Fu J, Zhang Y S, Yao K L 2010 Solid State Commun. 150 2239

    [7]

    Galanakis I, Mavropoulos P 2007 J. Phys.: Condens. Matter 19 315213

    [8]

    Picozzi S, Continenza A, Freeman A J 2002 Phys. Rev. B 66 094421

    [9]

    Galanakis I, Mavropoulos P 2003 Phys. Rev. B 67 104417

    [10]

    Yao K L, Gao G Y, Liu Z L, Zhu L 2005 Solid State Commun. 133 301

    [11]

    Xie W H, Xu Y Q, Liu B G, Pettifor D G 2003 Phys. Rev. Lett. 91 037204

    [12]

    Droghetti A, Baadji N, Sanvito S 2009 Phys. Rev. B 80 235310

    [13]

    Gao G Y, Xu B, Chen Z Y, Yao K L 2013 J. Alloys Compd. 546 119

    [14]

    Kato H, Okuda T, Okimoto Y, Tomioka Y, Takenoya Y, Ohkubo A, Kawasaki M, Tokuraa Y 2002 Appl. Phys. Lett. 81 328

    [15]

    Zhao J J, Qi X, Liu E K, Zhu W, Qian J F, Li G J, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 047108 (in Chinese)[赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒 2011 60 047108]

    [16]

    Soulen Jr. R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85

    [17]

    Yu D B, Feng J F, Du Y S, Han X F, Yan H, Ying Q M, Zhang G C 2005 Acta Phys. Sin. 54 4903 (in Chinese)[于郭波, 丰家峰, 杜永胜, 韩秀峰, 严辉, 应启明, 张国成 2005 54 4903]

    [18]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [19]

    Otto M J, van Woerden R A M, van der Valk P J, Wijngaard J, van Bruggen C F, Haas C, Buschow K H J 1989 J. Phys.: Condens. Matter 1 2341

    [20]

    Zhang M, Dai X, Hu H, Liu G, Cui Y, Liu Z, Chen J, Wang J, Wu G 2003 J. Phys.: Condens. Matter 15 7891

    [21]

    Zhang M, Liu Z H, Hu H N, Liu G D, Cui Y T, Wu G H, Bruck E, de Boer F R, Li Y X 2004 J. Appl. Phys. 95 7219

    [22]

    de Groot R A, van der Kraan A M, Buschow K H J 1986 J. Magn. Magn. Mater. 61 330

    [23]

    Xu B, Zhang M 2011 J. Magn. Magn. Mater. 323 939

    [24]

    Yao Z Y, Sun L, Pan M M, Sun S J 2016 Acta Phys. Sin. 65 127501 (in Chinese)[姚仲瑜, 孙丽, 潘孟美, 孙书娟 2016 65 127501]

    [25]

    Lin S Y, Yang X B, Zhao Y J 2014 J. Magn. Magn. Mater. 350 119

    [26]

    Chen J, Gao G Y, Yao K L, Song M H 2011 J. Alloys Compd. 509 10172

    [27]

    Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 1990 Comput. Phys. Commun. 59 399

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [29]

    Huang K, Han R Q 1988 Solid State Physics (Beijing: Higher Education Press) pp426, 427 (in Chinese)[黄昆, 韩汝琦, 1988 固体物理学 (北京: 高等教育出版社)第426, 427页]

    [30]

    Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T, Sawatzky G A 1993 Phys. Rev. B 48 16929

    [31]

    Kahal L, Ferhat M 2010 J. Appl. Phys. 107 043910

    [32]

    Gao G Y, Yao K L 2012 J. Appl. Phys. 111 113703

  • [1] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算.  , 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [2] 杨艳敏, 李佳, 马洪然, 杨广, 毛秀娟, 李聪聪. Co2-基Heusler合金Co2FeAl1–xSix(x = 0.25, x = 0.5, x = 0.75)的结构、电子结构及热电特性的第一性原理研究.  , 2019, 68(4): 046101. doi: 10.7498/aps.68.20181641
    [3] 许佳玲, 贾利云, 靳晓庆, 郝兴楠, 马丽, 侯登录. 系列CoMnZnZ四元Heusler化合物的结构和半金属铁磁性.  , 2019, 68(15): 157501. doi: 10.7498/aps.68.20190207
    [4] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究.  , 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [5] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究.  , 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [6] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性.  , 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [7] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算.  , 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [8] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究.  , 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [9] 赵翠莲, 甄聪棉, 马丽, 潘成福, 侯登录. Ge纳米结构的形貌与铁磁性研究.  , 2013, 62(3): 037502. doi: 10.7498/aps.62.037502
    [10] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究.  , 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [11] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [12] 王风, 王新强, 聂招秀, 程志梅, 刘高斌. 三元化合物ZnVSe2半金属铁磁性的第一性原理计算.  , 2011, 60(4): 046301. doi: 10.7498/aps.60.046301
    [13] 赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒. Co50Fe25-xMnxSi25系列合金的结构、磁性和半金属性研究.  , 2011, 60(4): 047108. doi: 10.7498/aps.60.047108
    [14] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究.  , 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [15] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源.  , 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [16] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究.  , 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [17] 罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究.  , 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [18] 陈宇辉, 王阳, 左方圆, 赖天树, 吴谊群. 半金属锑薄膜中电子动力学研究.  , 2009, 58(5): 3548-3552. doi: 10.7498/aps.58.3548
    [19] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  6788
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-09
  • 修回日期:  2018-08-20
  • 刊出日期:  2018-11-05

/

返回文章
返回
Baidu
map