Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Retrieval method of cirrus microphysical parameters at terahertz wave based on multiple lookup tables

Li Shu-Lei Liu Lei Gao Tai-Chang Hu Shuai Huang Wei

Citation:

Retrieval method of cirrus microphysical parameters at terahertz wave based on multiple lookup tables

Li Shu-Lei, Liu Lei, Gao Tai-Chang, Hu Shuai, Huang Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Cirrus is an important regulator for the flow of radiant energy in the earth-atmosphere system through the processes of scattering and absorption of radiation. In order to satisfy the urgent requirement for accurate retrieval of cirrus microphysical properties, terahertz wave is expected to be the best waveband for inverting cirrus particle size and ice water path, with terahertz wavelengths on the order of the size of typical cirrus particles. There is an urgent need for establishing stable and accurate inversion method. A new retrieval method for particle size and ice water path is developed based on multiple lookup tables for spaceborne measurements of brightness temperature spectrum of 183 GHz, 325 GHz, 462 GHz, 664 GHz, and 874 GHz channels. Five parameters are derived to quantify the effects of particle size and ice water path on terahertz radiation spectrum due to the scattering of ice clouds, manifested by brightness temperature difference, brightness temperature difference slope, etc. To retrieve cirrus microphysical parameters, a weighted least square fit that matches the modeled parameters is used. The analysis of retrieval errors are conducted by a simulated data series and the results are compared with those retrieved by the other two methods, i. e., difference method and slope method. The results retrieved by the multiple lookup table method are much closer to the simulated data series than those from the other two methods. It is indicated that the method introduced here is a stable and valid method of inverting particles between 50 and 500 m and ice water path between 10 and 500 g/m2. Compared with the errors from the difference-featured method and slope-featured method, the retrieval errors are reduced by 68.78% and 60.28% for particle size, 78.17% and 49.01% for ice water path. The analyses of retrieval uncertainties show that, in general, uncertainties of particle size and ice water path vary with particle size and ice water path. The ice water path uncertainties mainly spread in a range of 0-15 g/m2. The particle size uncertainties fluctuate within a range of 0-20 m. In other words, for small particle size range, the uncertainties are 0-5 m for thick clouds and 5-20 m for thin clouds. However, for large particle size range, the uncertainties are 0-5 m for particles larger than 300 m and 5-15 m for those smaller than 300 m. The results will be helpful for further developing the terahertz wave remote sensing of cirrus microphysical parameter technology. Moreover, it is also an important reference to the improvement of cirrus retrieval accuracy.
      Corresponding author: Liu Lei, liuleidll@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41575024).
    [1]

    Rossow W B, Schiffer R A 1991Bull.Am.Meteorol.Soc. 72 2

    [2]

    Parry M L, Canziani O F, Palutikof J P 2007Climate change 2007:Impacts, Adaptation and Vulnerability(Cambridge:Cambridge University Press) pp214-223

    [3]

    Heymsfield A J 2003J.Atmos.Sci. 60 2592

    [4]

    Davis C P, Evans K F, Buehler S A, Wu D L, Pumphrey H C 2006Atmos.Chem.Phys.Discuss. 6 12701

    [5]

    Mendrok J, Baron P, Yasuko K 2008Remote Sensing of Clouds and the Atmosphere XⅢ Cardiff, United Kingdom, September 15, 2008 p710704

    [6]

    Mendrok J, Wu D L, Stefan A B 2009Sensors, Systems and Next-generation Satellites XⅢBerlin, Germany, August 31, 2009 p74740T-1

    [7]

    Vanek M D, Nolt I G, Tappan N D, Peter A R, Gannaway F C, Hamilton P A, Lee C, Davis J E, Predko S 2001Appl.Opt. 40 2169

    [8]

    Evans K F, Walter S J, Heymsfield A J, Mcfarquhar G 2002J.Geophys.Res. 107 4028

    [9]

    Miao J, Johnsen K P, Buehler S A, Kokhanovsky A 2003Atmos.Chem.Phys. 3 39

    [10]

    Buehler S A, Jimnez C, Evans K F, Eriksson P, Rydberg B, Heymsfield A J, Stubenrauch C J, Lohmann U, Emde C, John V O, Sreerekha T R, Davis C P 2007Q.J.R.Meteorolog.Soc. 133 109

    [11]

    Zhao H B, Zheng C, Zhang Y F, Liang B, Ou N M, Miao J G 2014Prog.Electromagn.Res.M 35 183

    [12]

    Buehler S A, Defer E, Evans K F, Eliasson S, Mendrok J, Eriksson P, Lee C, Jimenez C, Prigent C, Crewell S, Kasai Y, Bennartz R, Gasiewski A J 2012Atmos.Meas.Tech. 5 1529

    [13]

    Moyna B, Lee C, Charlton J, Rule I, King R, Oldfield M, Kangas V 2010Twenty-First International Symposium on Space Terahertz Technology Oxford, UK, March 23, 2010 185

    [14]

    Evans K F, Stephens G L 1995J.Atmos.Sci. 52 2058

    [15]

    Evans K F, Walter S J, Heymsfield A J, Deeter M N 1998J.Appl.Meteor. 37 184

    [16]

    Jimnez C, Eriksson P, Murtagh D 2003J.Geophys.Res. 108 4791

    [17]

    Jimnez C, Buehler S A, Rydberg B, Eriksson P, Evans K F 2007Q.J.R.Meteorolog.Soc. 133 129

    [18]

    Evans K F, Walter S J, Heymsfield A J, McFarquhar G M 2002J.Geophys.Res. 107 4028

    [19]

    Evans K F, Wang J R, Racette P E, Heymsfield G, Li L H 2004J.Appl.Meteorol. 44 839

    [20]

    Evans K F, Wang J R, Starr D O, Heymsfield G, Li L H, Tian L, Lawson R P, Heymsfield A J, Bansemer A 2012Atmos.Meas.Tech. 5 2277

    [21]

    Li S L, Liu L, Gao T C, Huang W, Hu S 2016Acta Phys.Sin. 65 134102(in Chinese)[李书磊, 刘磊, 高太长, 黄威, 胡帅2016 65 134102]

    [22]

    Liou K N (translated by Guo C L, Zhou S J)2004An Introduction to Atmospheric Radiation(2nd Ed.)(Beijing:China Meteorology Press) pp170-176(in Chinese)[廖国男著(郭彩丽, 周诗健译)2004大气辐射导论(北京:气象出版社)第170-176页]

    [23]

    Buehler S A, Eriksson P, Kuhna T 2005J.Quant.Spectrosc.Radiat.Transfer 91 65

    [24]

    Eriksson P, Buehler S A, Davis C P 2011J.Quant.Spectrosc.Radiat.Transfer 112 1551

    [25]

    Emde C, Buehler S A, Davis C, Eriksson P, Sreerekha T R, Teichmann C 2004J.Geophys.Res. 109 D24207

    [26]

    Anderson G P, Clough S A, Kneizys F X 1986AFGL Atmospheric Constituent Profiles (0-120 km)(Hanscom Massachusetts:Optical Physics Division, Air Force Geophysics Laboratory) pp21-35

    [27]

    Hong G, Yang P, Baum B A, Heymsfield A J, Weng F Z, Liu Q H, Heygster G, Buehler S A 2009J.Geophys.Res. 114 D06201

    [28]

    Andrew J H, Aron B, Carl S 2004Am.Meteorol.Soc.61 982

    [29]

    Jeffrey L S, Julie A H, Andrew J H 2004Am.Meteorol.Soc.43 779

    [30]

    Baum B A, Heymsfield A J, Yang P, Bedka S T 2005J.Appl.Meteorol. 44 1885

    [31]

    Sheng P X, Mao J T, Li J G, Ge Z M, Zhang A C, Sang J G, Pan N X, Zhang H S 2013Atmospheric Physics(2nd Ed.)(Beijing:Peking University Press) pp304-305(in Chinese)[盛裴轩, 毛节泰, 李建国, 葛正谟, 张霭琛, 桑建国, 潘乃先, 张宏升2013大气物理学第二版(北京:北京大学出版社)第304-305页]

    [32]

    Henken C, Lindstrot R, Preusker R, Fischer J 2014Atmos.Meas.Tech. 7 3873

    [33]

    Arnold C P 2009Cloud Property Retrievals Using ATSR-2Transfer of Status Report Trinity Term pp27-28

    [34]

    Bevington P R, Robinson D K 2002Data Reduction and Error Analysis for the Physical Sciences(3rd Ed.)(New York:McGraw-Hill Education) pp36-46

  • [1]

    Rossow W B, Schiffer R A 1991Bull.Am.Meteorol.Soc. 72 2

    [2]

    Parry M L, Canziani O F, Palutikof J P 2007Climate change 2007:Impacts, Adaptation and Vulnerability(Cambridge:Cambridge University Press) pp214-223

    [3]

    Heymsfield A J 2003J.Atmos.Sci. 60 2592

    [4]

    Davis C P, Evans K F, Buehler S A, Wu D L, Pumphrey H C 2006Atmos.Chem.Phys.Discuss. 6 12701

    [5]

    Mendrok J, Baron P, Yasuko K 2008Remote Sensing of Clouds and the Atmosphere XⅢ Cardiff, United Kingdom, September 15, 2008 p710704

    [6]

    Mendrok J, Wu D L, Stefan A B 2009Sensors, Systems and Next-generation Satellites XⅢBerlin, Germany, August 31, 2009 p74740T-1

    [7]

    Vanek M D, Nolt I G, Tappan N D, Peter A R, Gannaway F C, Hamilton P A, Lee C, Davis J E, Predko S 2001Appl.Opt. 40 2169

    [8]

    Evans K F, Walter S J, Heymsfield A J, Mcfarquhar G 2002J.Geophys.Res. 107 4028

    [9]

    Miao J, Johnsen K P, Buehler S A, Kokhanovsky A 2003Atmos.Chem.Phys. 3 39

    [10]

    Buehler S A, Jimnez C, Evans K F, Eriksson P, Rydberg B, Heymsfield A J, Stubenrauch C J, Lohmann U, Emde C, John V O, Sreerekha T R, Davis C P 2007Q.J.R.Meteorolog.Soc. 133 109

    [11]

    Zhao H B, Zheng C, Zhang Y F, Liang B, Ou N M, Miao J G 2014Prog.Electromagn.Res.M 35 183

    [12]

    Buehler S A, Defer E, Evans K F, Eliasson S, Mendrok J, Eriksson P, Lee C, Jimenez C, Prigent C, Crewell S, Kasai Y, Bennartz R, Gasiewski A J 2012Atmos.Meas.Tech. 5 1529

    [13]

    Moyna B, Lee C, Charlton J, Rule I, King R, Oldfield M, Kangas V 2010Twenty-First International Symposium on Space Terahertz Technology Oxford, UK, March 23, 2010 185

    [14]

    Evans K F, Stephens G L 1995J.Atmos.Sci. 52 2058

    [15]

    Evans K F, Walter S J, Heymsfield A J, Deeter M N 1998J.Appl.Meteor. 37 184

    [16]

    Jimnez C, Eriksson P, Murtagh D 2003J.Geophys.Res. 108 4791

    [17]

    Jimnez C, Buehler S A, Rydberg B, Eriksson P, Evans K F 2007Q.J.R.Meteorolog.Soc. 133 129

    [18]

    Evans K F, Walter S J, Heymsfield A J, McFarquhar G M 2002J.Geophys.Res. 107 4028

    [19]

    Evans K F, Wang J R, Racette P E, Heymsfield G, Li L H 2004J.Appl.Meteorol. 44 839

    [20]

    Evans K F, Wang J R, Starr D O, Heymsfield G, Li L H, Tian L, Lawson R P, Heymsfield A J, Bansemer A 2012Atmos.Meas.Tech. 5 2277

    [21]

    Li S L, Liu L, Gao T C, Huang W, Hu S 2016Acta Phys.Sin. 65 134102(in Chinese)[李书磊, 刘磊, 高太长, 黄威, 胡帅2016 65 134102]

    [22]

    Liou K N (translated by Guo C L, Zhou S J)2004An Introduction to Atmospheric Radiation(2nd Ed.)(Beijing:China Meteorology Press) pp170-176(in Chinese)[廖国男著(郭彩丽, 周诗健译)2004大气辐射导论(北京:气象出版社)第170-176页]

    [23]

    Buehler S A, Eriksson P, Kuhna T 2005J.Quant.Spectrosc.Radiat.Transfer 91 65

    [24]

    Eriksson P, Buehler S A, Davis C P 2011J.Quant.Spectrosc.Radiat.Transfer 112 1551

    [25]

    Emde C, Buehler S A, Davis C, Eriksson P, Sreerekha T R, Teichmann C 2004J.Geophys.Res. 109 D24207

    [26]

    Anderson G P, Clough S A, Kneizys F X 1986AFGL Atmospheric Constituent Profiles (0-120 km)(Hanscom Massachusetts:Optical Physics Division, Air Force Geophysics Laboratory) pp21-35

    [27]

    Hong G, Yang P, Baum B A, Heymsfield A J, Weng F Z, Liu Q H, Heygster G, Buehler S A 2009J.Geophys.Res. 114 D06201

    [28]

    Andrew J H, Aron B, Carl S 2004Am.Meteorol.Soc.61 982

    [29]

    Jeffrey L S, Julie A H, Andrew J H 2004Am.Meteorol.Soc.43 779

    [30]

    Baum B A, Heymsfield A J, Yang P, Bedka S T 2005J.Appl.Meteorol. 44 1885

    [31]

    Sheng P X, Mao J T, Li J G, Ge Z M, Zhang A C, Sang J G, Pan N X, Zhang H S 2013Atmospheric Physics(2nd Ed.)(Beijing:Peking University Press) pp304-305(in Chinese)[盛裴轩, 毛节泰, 李建国, 葛正谟, 张霭琛, 桑建国, 潘乃先, 张宏升2013大气物理学第二版(北京:北京大学出版社)第304-305页]

    [32]

    Henken C, Lindstrot R, Preusker R, Fischer J 2014Atmos.Meas.Tech. 7 3873

    [33]

    Arnold C P 2009Cloud Property Retrievals Using ATSR-2Transfer of Status Report Trinity Term pp27-28

    [34]

    Bevington P R, Robinson D K 2002Data Reduction and Error Analysis for the Physical Sciences(3rd Ed.)(New York:McGraw-Hill Education) pp36-46

  • [1] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [2] Biological effects of terahertz waves. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20211996
    [3] Hou Lei, Wang Jun-Nan, Wang Lei, Shi Wei. Experimental study and simulation analysis of terahertz absorption spectra of α-lactose aqueous solution. Acta Physica Sinica, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [4] Ning Hui, Wang Kai-Cheng, Wang Shao-Meng, Gong Yu-Bin. Vibrational dynamics of hydrogen molecules under intense THz waves. Acta Physica Sinica, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [5] Wang Hong-Xia, Zhang Qing-Hua, Hou Wei-Jun, Wei Yi-Wei. Analysis of terahertz wave attenuated by sand and dust storms with different modes. Acta Physica Sinica, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [6] Peng Xiao-Yu, Zhou Huan. Biological effects of terahertz waves. Acta Physica Sinica, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [7] Wang Lei, Xiao Rui-Wen, Ge Shi-Jun, Shen Zhi-Xiong, Lü Peng, Hu Wei, Lu Yan-Qing. Research progress of terahertz liquid crystal materials and devices. Acta Physica Sinica, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [8] Chen Wei, Guo Li-Xin, Li Jiang-Ting, Dan Li. Propagation characteristics of terahertz waves in temporally and spatially inhomogeneous plasma sheath. Acta Physica Sinica, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [9] Mo Man-Man, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Li Sheng, Jing Yu-Lan, Zhang Huai-Wu. A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on circular-truncated cone structure. Acta Physica Sinica, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [10] Sun Dan-Dan, Chen Zhi, Wen Qi-Ye, Qiu Dong-Hong, Lai Wei-En, Dong Kai, Zhao Bi-Hui, Zhang Huai-Wu. VO2 low temperature deposition and terahertz transmission modulation. Acta Physica Sinica, 2013, 62(1): 017202. doi: 10.7498/aps.62.017202
    [11] Si Li-Ming, Hou Ji-Xuan, Liu Yong, Lü Xin. Extraction of effective constitutive parameters of active terahertz metamaterial with negative differential resistance carbon nanotubes. Acta Physica Sinica, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [12] Zhang Hui-Yun, Liu Meng, Yin Yi-Heng, Wu Zhi-Xin, Shen Duan-Long, Zhang Yu-Ping. Study on scattering properties of the metal wire gating in a THz band based on Green function method. Acta Physica Sinica, 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [13] Wang Yue, Wang Xuan, He Xun-Jun, Mei Jin-Shuo, Chen Ming-Hua, Yin Jing-Hua, Lei Qing-Quan. Progress in terahertz surface plasmonics. Acta Physica Sinica, 2012, 61(13): 137301. doi: 10.7498/aps.61.137301
    [14] Zheng Ling, Zhao Qing, Liu Shu-Zhang, Xing Xiao-Jun. Studies of terahertz wave propagation in non-magnetized plasma. Acta Physica Sinica, 2012, 61(24): 245202. doi: 10.7498/aps.61.245202
    [15] Lu Jin-Xing, Huang Zhi-Ming, Huang Jing-Guo, Wang Bing-Bing, Shen Xue-Min. Analysis of the effect of phase-mismatch and material absorption on the terahertz-wave generation from GaSe. Acta Physica Sinica, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [16] Le Li-Wei, Wang Yan, Wang Yue, Wu Yu-Ming, Fu Jia-Hui, Wang Dong-Xing, Wu Qun. Theoretical study and numerical verification of terahertz radiation emitted by carbon nanotubes. Acta Physica Sinica, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [17] Li Zhong-Yang, Yao Jian-Quan, Li Jun, Bing Pi-Bin, Xu De-Gang, Wang Peng. Theoretical study of tunable terahertz radiation based on stimulated polariton scattering in zinc blende crystal. Acta Physica Sinica, 2010, 59(9): 6237-6242. doi: 10.7498/aps.59.6237
    [18] Zhang Rong, Cao Jun-Cheng. Research on modulation property of photonic crystals in terahertz range. Acta Physica Sinica, 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [19] Wang Yue, Wu Qun, Shi Wei, He Xun-Jun, Yin Jing-Hua. Terahertz antenna based on the carbon nano-tube in the nano-scopic domain. Acta Physica Sinica, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [20] Sun Hong-Qi, Zhao Guo-Zhong, Zhang Cun-Lin, Yang Guo-Zhen. The characteristics of terahertz radiation from InAs irradiated with femtosecond optical pulses of different wavelengths. Acta Physica Sinica, 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
Metrics
  • Abstract views:  6213
  • PDF Downloads:  204
  • Cited By: 0
Publishing process
  • Received Date:  05 August 2016
  • Accepted Date:  30 November 2016
  • Published Online:  05 March 2017

/

返回文章
返回
Baidu
map