-
Femtosecond laser excited terahertz waves have been widely used in various fields. Herein, we demonstrate a novel method to generate terahertz radiation from a terahertz electro-optic crystal excited by infrared supercontinuum radiation (wavelengths > 1 μm), which is produced via the interaction between a femtosecond laser and a transparent solid medium. This approach yields single-cycle, low-frequency, broadband terahertz radiation. In the femtosecond laser-induced ionization process in a medium, both infrared supercontinuum radiation and terahertz radiation are simultaneously generated. When the resulting infrared supercontinuum radiation and terahertz radiation concurrently enter into an electro-optic crystal, the presence of the infrared supercontinuum radiation may interfere with the detection of the intrinsic terahertz radiation. By filtering the infrared supercontinuum radiation with narrowband filters, a new strategy is proposed for investigating the response of the electro-optic crystal in infrared spectral region.
-
Keywords:
- femtosecond laser /
- terahertz wave /
- supercontinuum radiation /
- solid medium
-
图 1 超连续辐射产生及太赫兹波探测实验布局 (a)单发电光采样实验装置示意图, ①光谱测量单元, ②能量测量单元, ③离焦量示意图; (b)THz-TDS系统实验装置示意图; (c)硅滤片在红外和太赫兹波段的透过率和反射率曲线; (d)低通滤片在红外和太赫兹波段的透过率曲线
Figure 1. Experimental setup for generation of supercontinuum radiation and THz detection: (a) Schematic diagram of experimental setup of single-shot electro-optic, in which ① the spectral measurements unit, ②the energy measurement unit, and ③ the schematic diagram of the defocus amount; (b)schematic diagram of experimental setup of THz-TDS system; (c)transmission and reflectance curves of the silicon filter in the infrared and terahertz spectral regions; (d) transmission curve of the low-pass filter in the infrared and terahertz spectral regions.
图 5 红外超连续辐射泵浦GaP晶体产生的太赫兹辐射, 黑线为不加太赫兹低通情况下的实验结果, 红线为放入太赫兹低通时的实验结果
Figure 5. THz radiation generated from GaP crystal pumped by infrared supercontinuum radiation, the black line represents the experimental results obtained without the THz low-pass filter, whereas the red line represents the experimental results obtained with the THz low-pass filter in place.
-
[1] Dhillon S S, Vitiello M S, Linfield E H, Davies A G, Hoffmann M C, Booske J, Paoloni C, Gensch M, Weightman P, Williams G P, Castro-Camus E, Cumming D R S, Simoens F, Escorcia-Carranza I, Grant J, Lucyszyn S, Kuwata-Gonokami M, Konishi K, Koch M, Schmuttenmaer C A, Cocker T L, Huber R, Markelz A G, Taylor Z D, Wallace V P, Zeitler J A, Sibik J, Korter T M, Ellison B, Rea S, Goldsmith P, Cooper K B, Appleby R, Pardo D, Huggard P G, Krozer V, Shams H, Fice M, Renaud C, Seeds A, Stöhr A, Naftaly M, Ridler N, Clarke R, Cunningham J E, Johnston M B 2017 J. Phys. D: Appl. Phys. 50 043001
Google Scholar
[2] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26
Google Scholar
[3] Liu K, Xu J Z, Yuan T, Zhang X C 2006 Phys. Rev. B 73 155330
Google Scholar
[4] Rice A, Jin Y, Ma X F, Zhang X C, Bliss D, Larkin J, Alexander M 1994 Appl. Phys. Lett. 64 1324
Google Scholar
[5] Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023 Adv. Mater. 35 2208947
Google Scholar
[6] Tzortzakis S, Méchain G, Patalano G, André Y-B, Prade B, Franco M, Mysyrowicz A, Munier J-M, Gheudin M, Beaudin G, Encrenaz P 2002 Opt. Lett. 27 1944
Google Scholar
[7] Jin Q, Williams K, Dai J M, Zhang X C 2017 Appl. Phys. Lett. 111 071103
Google Scholar
[8] Dey I, Jana K, Fedorov V Y, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, Kumar G R 2017 Nat. Commun. 8 1184
Google Scholar
[9] Liao G Q, Liu H, Scott G G, Zhang Y H, Zhu B J, Zhang Z, Li Y T, Armstrong C, Zemaityte E, Bradford P, Rusby D R, Neely D, Huggard P, McKenna P, Brenner C, Woolsey N, Wang W M, Sheng Z M, Zhang J 2020 Phys. Rev. X 10 031062
[10] Tan Y, Zhao H, Wang W M, Zhang R, Zhao Y J, Zhang C L, Zhang X C, Zhang L L 2022 Phys. Rev. Lett. 128 093902
Google Scholar
[11] Chen Y X, He Y H, Dai C Y, La X Y, Tian Z, Dai J M 2024 Chin. Opt. Lett. 22 073701
Google Scholar
[12] Ding J, Meng Q H, Shen Y, Ding C X, Su B, Cui H L, Zhang C L 2023 Chin. Phys. B 32 048702
Google Scholar
[13] Wu Q, Litz M, Zhang X C 1996 Appl. Phys. Lett. 68 2924
Google Scholar
[14] Jin Q, Dai J M, E Y W, Zhang X C 2018 Appl. Phys. Lett. 113 261101
Google Scholar
[15] Jin Q, E Y W, Gao S H, Zhang X C 2020 Adv. Photon. 2 015001
[16] Zafar S, Li D W, Camino A, Chang J W, Hao Z Q 2022 Chin. Phys. B 31 084209
Google Scholar
[17] Jiang Z P, Sun F G, Chen Q, Zhang X C 1999 Appl. Phys. Lett. 74 1191
Google Scholar
[18] Ojo M E, Fauquet F, Mounaix P, Bigourd D 2023 Photonics 10 316
Google Scholar
[19] Jiang Z, Zhang X C 1998 Appl. Phys. Lett. 72 1945
Google Scholar
[20] Jiang Z, Sun F G, Zhang X C 1999 Opt. Lett. 24 1245
Google Scholar
[21] Kim K Y, Yellampalle B, Rodriguez G, Averitt R D, Taylor A J, Glownia J H 2006 Appl. Phys. Lett. 88 041123
Google Scholar
[22] Tian Z, Wang C L, Xing Q R, Gu J Q, Li Y F, He M X, Chai L, Wang Q Y, Zhang W L 2008 Appl. Phys. Lett. 92 041106
Google Scholar
[23] Song Q, Chai L, Liu W N, Ma Q, Li Y F, Wang C Y, Hu M L 2019 Infrared Phys. Technol. 97 54
Google Scholar
[24] van der Valk N C, Planken P C, Buijserd A N, Bakker H J 2005 J. Opt. Soc. Amer. B 22 1714
Google Scholar
Metrics
- Abstract views: 350
- PDF Downloads: 5
- Cited By: 0