-
Water has the strong absorption of terahertz (THz) wave, so it always a difficult problem to study the characteristics of aqueous samples by THz technology. In this paper, THz waves with high field strength are obtained at the position of sample by using photoconductive antenna working in high-gain mode and horn shaped graded parallel plate waveguide in THz time-domain spectrum system, and the THz spectrum of α-lactose solution in a range of 0.1-1.5 THz is directly detected. Furthermore, the absorption spectrum of α-lactose single molecule model in water environment is simulated by the density functional theory, and the simulation results are in good agreement with the experimental results. This work has important reference value for directly detecting the spectral characteristics of water samples in THz band.
-
Keywords:
- terahertz waves /
- terahertz time-domain spectroscopy system /
- density functional theory /
- α-lactose
[1] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar
[2] Menikh A, Michkan P S, Liu H B, MacColl R, Zhang X C 2016 Biosens. Bioelectron. 20 658Google Scholar
[3] Penkov N V, Yashin V A, Belosludtsev K N 2021 Appl. Spectrosc. 75 189Google Scholar
[4] Cherkasova O, Nazarov M, Shkurinov A 2016 Opt. Quantum Electron. 48 217Google Scholar
[5] Pickwell E, Wallace V P 2006 J. Phys. D: Appl. Phys. 39 R301Google Scholar
[6] Strachan C J, Rades T, Newnham D A, Gordon K C, Pepper M, Taday P F 2004 Chem. Phys. Lett. 390 20Google Scholar
[7] Brown E R, Bjarnason J E, Fedor A M, Korter T M 2007 Appl. Phys. Lett. 90 061908Google Scholar
[8] Mclntosh A I, Yang B, Goldup S M, Watkinson M, Donnan R S 2013 Chem. Phys. Lett. 558 104Google Scholar
[9] 黄瑞瑞, 赵国忠, 刘影, 寇宽, 顾畅 2015 光学学报 35 s230001Google Scholar
Huang R R, Zhao G Z, Liu Y, Kou K, Gu C 2015 Acta Opt. Sin. 35 s230001Google Scholar
[10] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志 2015 64 114206Google Scholar
Lu W L, Lou S Q, Wang X, Shen Y, Sheng X Z 2015 Acta Phys. Sin. 64 114206Google Scholar
[11] 陈涛, 蔡治华, 胡放荣, 殷贤华, 许川佩 2019 光谱学与光谱分析 39 686Google Scholar
Chen T, Cai Z H, Hu F R, Yin X H, Xu C P 2019 Spectrosc. Spect. Anal. 39 686Google Scholar
[12] Wang Y M, Zhao Z S, Qin J Y, Liu H, Liu A F, Xu M M 2020 Talanta 208 120469Google Scholar
[13] Yang Y H, Shutler A, Grischkowsky D 2011 Opt. Express 19 8830Google Scholar
[14] Grognot M, Gallot G 2015 Appl. Phys. Lett. 107 103702Google Scholar
[15] Shih K L, Pitchappa P, Jin L, Chen C H, Singh R, Lee C 2018 Appl. Phys. Lett. 113 071105Google Scholar
[16] Keshavarz A, Vafapour Z 2019 IEEE Sens. J. 19 5161Google Scholar
[17] Kindt J T, Schmuttenmaer C A 1996 J. Phys. Chem. 100 10373Google Scholar
[18] Yamauchi S, Hatakeyama S, Imai Y, Tonouchi M 2014 Opt. Eng. 53 031203Google Scholar
[19] The Cambridge Crystallographic Data Centre https://www.ccdc.cam.ac.uk/structures/ [2021-11-8]
[20] Vallet V, Macak P, Wahlgren U, Grenthe I 2006 Theor. Chem. Acc. 115 145Google Scholar
[21] 郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤 2014 63 213101Google Scholar
Zheng Y Y, Ren G M, Chen R, Wang X M, Chen X H, Wang L, Yuan L, Huang X F 2014 Acta Phys. Sin. 63 213101Google Scholar
[22] Takahashi M 2014 Crystals 4 74Google Scholar
[23] Grimme S 2004 Comput. Chem. 25 1463Google Scholar
[24] Yu B, Zeng F, Yang Y, Xing Q, Chechin A, Xin X, Zeylikovich I, Alfano R R 2004 Biophys. J. 86 1649Google Scholar
-
表 1 乳糖一水合物振动频率的PED分析
Table 1. Assignments of vibration frequencies for lactose monohydrate by PED.
物质 频率/THz 振动模式 α-乳糖一
水合物0.58 C2-O18-C7&C3-C5-C7-C9 (35.5%) 1.01 C2-O18-C7&C1-C3-C5-C7 (34.5%) 1.19 C2-O18-C7&C1-C3-C5-C7 (44.6%) 1.47 C2-O18-C7&C1-C3-C5-C7 (35.7%) -
[1] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar
[2] Menikh A, Michkan P S, Liu H B, MacColl R, Zhang X C 2016 Biosens. Bioelectron. 20 658Google Scholar
[3] Penkov N V, Yashin V A, Belosludtsev K N 2021 Appl. Spectrosc. 75 189Google Scholar
[4] Cherkasova O, Nazarov M, Shkurinov A 2016 Opt. Quantum Electron. 48 217Google Scholar
[5] Pickwell E, Wallace V P 2006 J. Phys. D: Appl. Phys. 39 R301Google Scholar
[6] Strachan C J, Rades T, Newnham D A, Gordon K C, Pepper M, Taday P F 2004 Chem. Phys. Lett. 390 20Google Scholar
[7] Brown E R, Bjarnason J E, Fedor A M, Korter T M 2007 Appl. Phys. Lett. 90 061908Google Scholar
[8] Mclntosh A I, Yang B, Goldup S M, Watkinson M, Donnan R S 2013 Chem. Phys. Lett. 558 104Google Scholar
[9] 黄瑞瑞, 赵国忠, 刘影, 寇宽, 顾畅 2015 光学学报 35 s230001Google Scholar
Huang R R, Zhao G Z, Liu Y, Kou K, Gu C 2015 Acta Opt. Sin. 35 s230001Google Scholar
[10] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志 2015 64 114206Google Scholar
Lu W L, Lou S Q, Wang X, Shen Y, Sheng X Z 2015 Acta Phys. Sin. 64 114206Google Scholar
[11] 陈涛, 蔡治华, 胡放荣, 殷贤华, 许川佩 2019 光谱学与光谱分析 39 686Google Scholar
Chen T, Cai Z H, Hu F R, Yin X H, Xu C P 2019 Spectrosc. Spect. Anal. 39 686Google Scholar
[12] Wang Y M, Zhao Z S, Qin J Y, Liu H, Liu A F, Xu M M 2020 Talanta 208 120469Google Scholar
[13] Yang Y H, Shutler A, Grischkowsky D 2011 Opt. Express 19 8830Google Scholar
[14] Grognot M, Gallot G 2015 Appl. Phys. Lett. 107 103702Google Scholar
[15] Shih K L, Pitchappa P, Jin L, Chen C H, Singh R, Lee C 2018 Appl. Phys. Lett. 113 071105Google Scholar
[16] Keshavarz A, Vafapour Z 2019 IEEE Sens. J. 19 5161Google Scholar
[17] Kindt J T, Schmuttenmaer C A 1996 J. Phys. Chem. 100 10373Google Scholar
[18] Yamauchi S, Hatakeyama S, Imai Y, Tonouchi M 2014 Opt. Eng. 53 031203Google Scholar
[19] The Cambridge Crystallographic Data Centre https://www.ccdc.cam.ac.uk/structures/ [2021-11-8]
[20] Vallet V, Macak P, Wahlgren U, Grenthe I 2006 Theor. Chem. Acc. 115 145Google Scholar
[21] 郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤 2014 63 213101Google Scholar
Zheng Y Y, Ren G M, Chen R, Wang X M, Chen X H, Wang L, Yuan L, Huang X F 2014 Acta Phys. Sin. 63 213101Google Scholar
[22] Takahashi M 2014 Crystals 4 74Google Scholar
[23] Grimme S 2004 Comput. Chem. 25 1463Google Scholar
[24] Yu B, Zeng F, Yang Y, Xing Q, Chechin A, Xin X, Zeylikovich I, Alfano R R 2004 Biophys. J. 86 1649Google Scholar
Catalog
Metrics
- Abstract views: 6505
- PDF Downloads: 204
- Cited By: 0