-
传热恶化是超临界流体(Supercutical fluid, SCF)传热研究重要问题之一,但由于SCF在跨过拟临界点时,流体存在非平衡过程,类气和类液之间的转变对传热的影响尚没有统一认识。本文假设SCF在宏观上存在类似于亚临界流动沸腾现象,通过类比亚临界沸腾传热,认为超临界CO2传热恶化原因之一是由于流体膨胀导致热量不能被及时从壁面被带走,并提出一个类沸腾临界点模型。结果表明:类沸腾引起的传热恶化发生在大温度梯度下,较大的温度梯度使类过热液层覆盖在壁面,并使类气和类液呈现不同的分布形式,从而表现出不同的传热特性;当内壁温大于拟临界温度时,覆盖在壁面的过热类液焓值超过一定值会发生传热恶化,提出的理论模型能够较好的解释实验结果,此外考虑类沸腾的传热关联式,预测精度大大提高。本文从理论上建立超临界和亚临界传热之间的联系,为SCF传热恶化研究提供了新思路,丰富了超临界压力下的传热理论。Heat transfer deterioration (HTD) is one of the important problems in the study of supercritical fluid (SCF) heat transfer. However, SCF is very complicated because of the none-quilibrium process when it crosses the pseudo-critical point. Recently, the existence of SCF pseudo-boiling at the macro scale causes controversy. There is still no unified understanding of the effect mechanism of gas-like and liquid-like transition on heat transfer. In this paper, it is assumed that SCF has a macroscopic phenomenon similar to subcritical flow boiling. By analogy with subcritical boiling heat transfer, a boiling critical point model is proposed to describe the HTD in supercritical CO2. Our study reveals the HTD caused by pseudo-boiling only occurs under large temperature gradient, which makes the superheated liquid-like layer cover the wall, and the gas-like and liquid-like may present different distribution forms, thus changing the heat transfer characteristics. When the wall temperature is greater than the pseudo-critical temperature and the enthalpy of the fluid layer covering the wall exceeds a certain value, the HTD may occur. The proposed theoretical model can explain the experimental results well, and the prediction accuracy of heat transfer correlation considering pseudo-boiling is greatly improved. In this paper, the connection between supercritical heat transfer and subcritical heat transfer is established theoretically, which provides a new idea for the study of SCF heat transfer deterioration and enriches the theory of supercritical heat transfer.
-
Keywords:
- Supercritical fluid /
- expansion /
- pseudo-boiling /
- heat transfer deterioration /
- theoretical model
-
[1] Jackson J D 2017 Appl. Therm. Eng. 124 1481
[2] Huang D, Wu Z, Sunden B, Li W 2016 Appl. Energ. 2016 162 494
[3] Xie J, Liu D, Yan H, Xie G, Boetcher S 2020 Int. J. Heat Mass Transfer 149 119233
[4] Cabeza L, Gracia A, Fernández A, Farid M 2017 Appl. Therm. Eng. 125 799
[5] Chen W, Fang X, Yu X, Su X 2015 Ann. Nucl. Energy 76 451
[6] Cheng X, Liu X 2018 J. Nucl. Eng. Radiat Sc. 4 011003
[7] Maxim F, Contescu C, Boillat P, Niceno B, Karalis K, Testino A, Ludwig C 2019 Nat. Commun. 10 1
[8] Maxim F, Karalis K, Boillat P, Banuti D, Marquez J, Damian B. Niceno P, Ludwig C 2021 Adv. Sci. 8 2002312
[9] Liu M Y, Tang J, Liu S H 2022 J. Supercrit. Fluids 183 105554
[10] Ackerman J W 1970 J. of Heat Transfer 92 490
[11] Zhu B G, Xu J L, Wu X M, Xie J, Li M J 2019 J Int. J. Therm. Sci. 136 254
[12] Zhang H S, Xu J L, Zhu X J, Xie J, Li M J, Zhu B G 2021 Appl. Therm. Eng. 182 116078
[13] Wang Q Y, Ma X J, Xu J L, Li M J, Wang Y 2021 Int. J. Heat Mass Transfer 181 121875
[14] Tripathi P, Basu S 2021 Phys. Fluids 33 043304
[15] Wang J, Li Z, Zhai Y, Wang H 2022 Int. J. Heat Mass Transfer 201 123571
[16] Peeters J 2022 Int. J. Heat Mass Transfer 186 122441
[17] Fan Y H, Tang G H, Sheng Q, Li X 2023 Energy 262 125470
[18] Banuti D T 2015 J. Supercrit. Fluids 98 12
[19] He X T, Xu J L, Cheng Y W 2023 Acta Phys. Sin. 72 057801 (in Chinese) [何孝天, 徐进良, 程怡玮 2023 72 057801].
[20] Lin R T 1988 Sci. Press 278 (in Chinese) [林瑞泰 2021 沸腾换热 278]
[21] Xu J L, Zhang H S, Zhu B G, Xie J 2020 Solar Eng. 195 27-36
[22] Zhang H S, Xu J L, Zhu X J 2021 Acta Phys. Sin. 70 044401 (in Chinese) [张海松, 徐进良,朱鑫杰 2021 70 044401]
[23] Zhang H S, Xu J L, Wang Q Y 2023 Int. J. Heat Mass Transfer 188 108242
[24] Zhu B G, Xu J L, Yan C S, Xie J 2020 Int. J. Heat Mass Transfer 148 119080
[25] Cheng X, Zhao M, Feuerstein F, Liu X 2019 Int. J. Heat Mass Transfer 131 527
[26] Gupta S, Mokry S, Pioro, I 2011 Proc. ICONE-19 43503 11
[27] Mokry S, Pioro I, Farah A, King K, Gupta S, Peiman W, Kirillov P 2011 Nucl. Eng. Des., 241 1126
[28] Kim D, Kim, M 2010 Nucl. Eng. Des. 240 3336
[29] Petukhov B.S, Kirillov 1958 Thermal Eng. 4 63
计量
- 文章访问数: 79
- PDF下载量: 3
- 被引次数: 0