搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

插层FeSe高温超导体的高压研究进展

孙建平 Prashant Shahi 周花雪 倪顺利 王少华 雷和畅 王铂森 董晓莉 赵忠贤 程金光

引用本文:
Citation:

插层FeSe高温超导体的高压研究进展

孙建平, Prashant Shahi, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光

Effect of high pressure on intercalated FeSe high-Tc superconductors

Sun Jian-Ping, Prashant Shahi, Zhou Hua-Xue, Ni Shun-Li, Wang Shao-Hua, Lei He-Chang, Wang Bo-Sen, Dong Xiao-Li, Zhao Zhong-Xian, Cheng Jin-Guang
PDF
导出引用
  • 通过对FeSe进行化学插层可以将其超导转变温度(Tc)从约8 K提高到40 K以上,实现高温超导电性.最近,我们对两种插层FeSe高温超导材料(Li0.84Fe0.16)OHFe0.98Se和Li0.36(NH3)yFe2Se2开展了高压调控研究,发现压力会首先抑制高温超导相(称为SC-I相),然后在临界压力Pc以上诱导出第二个高温超导相(称为SC-Ⅱ相),呈现出双拱形T-P超导相图.这两个体系的Pc分别约为5和2 GPa,两个体系SC-Ⅱ相的最高Tc分别可以达到约52和55 K,比相应SC-I相的初始Tc提高了10 K.对(Li0.84Fe0.16)OHFe0.98Se的正常态电输运性质分析表明,SC-I和SC-Ⅱ相的正常态分别具有费米液体和非费米液体行为,意味着这两个超导相可能存在显著差异.此外,还发现这两个体系的SC-Ⅱ相的Tc与霍尔系数倒数1/RH(载流子浓度ne)具有很好的线性依赖关系.对(Li0.84Fe0.16)OHFe0.98Se的高压X射线衍射测量排除了其在10 GPa以内发生结构相变的可能,因此Pc以上SC-Ⅱ相的出现和载流子浓度的增加很可能起源于压力导致的费米面重构.
    Among the iron-based superconductors, the structural simplest FeSe and its derived materials have received much attention in recent years due to the great tunability of the superconducting transition temperature (Tc). The relatively low Tc 8.5 K of FeSe can be raised to over 40 K via the interlayer intercalations such as AxFe2-ySe2 (A=K, Rb, Cs, Tl), Lix(NH3)yFe2Se2, and (Li1-xFex)OHFeSe. Although the monolayer FeSe/SrTiO3 is reported to have a Tc as high as 65 K, none of the Tc values of these FeSe-derived bulk materials has exceeded 50 K at ambient pressure so far. In order to explore other routes to further enhance Tc of FeSe-based materials, we recently performed the detailed high-pressure study of two intercalated FeSe high-Tc superconductors, namely (Li0.84Fe0.16)OHFe0.98Se and Li036(NH3)yFe2Se2, by using a cubic anvil cell apparatus. We find that the applied high pressure first suppresses the superconducting phase (denoted as SC-I) and then induces a second high-Tc superconducting phase (denoted as SC-Ⅱ) above a critical pressure Pc (~5 GPa for (Li0.84Fe0.16)OHFe0.98Se and 2 GPa for Li036(NH3)yFe2Se2). The highest Tc values in the SC-Ⅱ phases of these two compounds can reach~52 K and 55 K, respectively, the latter of which is the highest in the FeSe-based bulk materials, and is very close to the highest Tc of FeAs-based high-Tc superconductors. Our high-precision resistivity data of (Li0.84Fe0.16)OHFe0.98Se also uncover a sharp transition of the normal state from Fermi liquid for SC-I to non-Fermi liquid for SC-Ⅱ phase. In addition, the reemergence of high-Tc SC-Ⅱ phase under pressure is found to be accompanied with a concurrent enhancement of electron carrier density. Interestingly, we find a nearly parallel scaling behavior between Tc and the inverse Hall coefficient for the SC-Ⅱ phases of both (Li0.84Fe0.16)OHFe0.98Se and Li0.36(NH3)yFe2Se2. In the case without structural transition below 10 GPa, the observed enhancement of carrier density in SC-Ⅱ should be ascribed to an electronic origin presumably associated with pressure-induced Fermi surface reconstruction. Our work demonstrates that high pressure offers a distinctive means to further raise the maximum Tc values of intercalated FeSe-based materials.
      通信作者: 程金光, jgcheng@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11574377)、国家重点研发计划(批准号:2018YFA0305700,2018YFA0305800)和中国科学院前沿科学重点项目(批准号:QYZDB-SSW-SLH013,QYZDB-SSW-SLH001)资助的课题.
      Corresponding author: Cheng Jin-Guang, jgcheng@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574377), the National Key R D Program of China (Grant Nos. 2018YFA0305700, 2018YFA0305800), and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant Nos. QYZDB-SSW-SLH013, QYZDB-SSW-SLH001).
    [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [2]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 Natl. Sci. Rev. 1 371

    [3]

    Si Q, Yu R, Abraham E 2016 Nat. Rev. Mater. 1 16017

    [4]

    Ren Z, Lu W, Yang J, Yi W, Shen X, Li Z, Che G, Dong X, Sun L, Zhou F, Zhao Z 2008 Chin. Phys. Lett. 25 2215

    [5]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [6]

    Bohmer A E, Kreisel A 2018 J. Phys.: Condens. Matter 30 023001

    [7]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [8]

    Shimojima T, Suzuki Y, Snonbe T, Nakamura A, Sakano M, Omachi J, Yoshioka K, Kuwata-Gonokami M, Ono K, Kumigashira H, Bohmer A E, Hardy F, Wolf T, Meingast C, Lohneysen H v, Ikeda H, Ishizaka K 2014 Phys. Rev. B 90 121111

    [9]

    Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001

    [10]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97

    [11]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953

    [12]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 PNAS 105 14262

    [13]

    Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, Lohneysen H v, Shibauchi T, Matsuda Y 2014 PNAS 111 16309

    [14]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [15]

    Scheidt E W, Hathwar V R, Schmitz D, Dunbar A, Scherer W, Mayr F, Tsurkan V, Deisenhofer J, Loidl A 2012 Eur. Phys. J. B 85 279

    [16]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Lou X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2014 Nat. Mater. 14 325

    [17]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [18]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [19]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ouyang B, Wang Q, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605

    [20]

    Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nat. Mater. 14 285

    [21]

    Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608

    [22]

    Lei B, Xiang Z J, Lu X F, Wang N Z, Chang J R, Shang C, Zhang A M, Zhang Q M, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. B 93 060501

    [23]

    Ren M Q, Yan Y J, Niu X H, Tao R, Hu D, Peng R, Xie B P, Zhao J, Zhang T, Feng D L 2017 Sci. Adv. 3 e1603238

    [24]

    Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K, Zhao Z X 2012 Nature 483 67

    [25]

    Wang C H, Chen T K, Chang C C, Hsu C H, Lee Y C, Wang M J, Wu P M, Wu M K 2015 EPL 111 27004

    [26]

    Ye F, Bao W, Chi S, dos Santos A M, Molaison J J, Fang M H, Wang H D, Mao Q H, Wang J C, Liu J J, Sheng J M 2014 Chin. Phys. Lett. 31 127401

    [27]

    Fujita H, Kagayama T, Shimizu K, Yamamoto Y, Mizuki J I, Okazaki H, Takano Y 2015 J. Phys.: Conf. Ser. 592 012070

    [28]

    Izumi M, Zheng L, Sakai Y, Goto H, Sakata M, Nakamoto Y, Nguyen H L, Kagayama T, Shimizu K, Araki S, Kobayashi T C, Kambe T, Gu D, Guo J, Liu J, Li Y, Sun L, Prassides K, Kubozono Y 2015 Sci. Rep. 5 9477

    [29]

    Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, Zhao Z X 2015 Phys. Rev. B 92 064515

    [30]

    Sun S S, Wang S H, Yu R, Lei H C 2017 Phys. Rev. B 96 064512

    [31]

    Cheng J G 2017 Acta Phys. Sin. 66 037401 (in Chinese)[程金光 2017 66 037401]

    [32]

    Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, Cheng J G 2018 Nat. Commun. 9 380

    [33]

    Shahi P, Sun J P, Wang S H, Jiao Y Y, Chen K Y, Sun S S, Lei H C, Uwatoko Y, Wang B S, Cheng J G 2017 Phys. Rev. B 97 020508

    [34]

    Cheng J G, Wang B S, Sun J P, Uwatoko Y 2018 Chin. Phys. B 27 077403

    [35]

    Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G, Zhao Z 2015 J. Am. Chem. Soc. 137 66

    [36]

    Jin K, Butch N P, Kirshenbaum K, Paglione J, Greene R L 2011 Nature 476 73

    [37]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Kirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519

    [38]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Comm. 7 12146

    [39]

    Phan G N, Nakayama K, Sugawara K, Sato T, Urato T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A, Takahashi T 2017 Phys. Rev. B 95 224507

    [40]

    Iimura S, Matsuishi S, Sato H, Hanna T, Muraba Y, Kim S W, Kim J E, Takata M, Hosono H 2012 Nat. Commun. 3 943

    [41]

    Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X, Zheng G Q 2015 Chin. Phys. Lett. 32 107401

    [42]

    Das T, Panagopoulos C 2016 New J. Phys. 18 103033

    [43]

    Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G, Steglich F 2003 Science 302 2104

    [44]

    Das T, Balatsky A V 2013 New J. Phys. 15 093045

  • [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [2]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 Natl. Sci. Rev. 1 371

    [3]

    Si Q, Yu R, Abraham E 2016 Nat. Rev. Mater. 1 16017

    [4]

    Ren Z, Lu W, Yang J, Yi W, Shen X, Li Z, Che G, Dong X, Sun L, Zhou F, Zhao Z 2008 Chin. Phys. Lett. 25 2215

    [5]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [6]

    Bohmer A E, Kreisel A 2018 J. Phys.: Condens. Matter 30 023001

    [7]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [8]

    Shimojima T, Suzuki Y, Snonbe T, Nakamura A, Sakano M, Omachi J, Yoshioka K, Kuwata-Gonokami M, Ono K, Kumigashira H, Bohmer A E, Hardy F, Wolf T, Meingast C, Lohneysen H v, Ikeda H, Ishizaka K 2014 Phys. Rev. B 90 121111

    [9]

    Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001

    [10]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97

    [11]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953

    [12]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 PNAS 105 14262

    [13]

    Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, Lohneysen H v, Shibauchi T, Matsuda Y 2014 PNAS 111 16309

    [14]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [15]

    Scheidt E W, Hathwar V R, Schmitz D, Dunbar A, Scherer W, Mayr F, Tsurkan V, Deisenhofer J, Loidl A 2012 Eur. Phys. J. B 85 279

    [16]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Lou X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2014 Nat. Mater. 14 325

    [17]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [18]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [19]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ouyang B, Wang Q, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605

    [20]

    Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nat. Mater. 14 285

    [21]

    Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608

    [22]

    Lei B, Xiang Z J, Lu X F, Wang N Z, Chang J R, Shang C, Zhang A M, Zhang Q M, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. B 93 060501

    [23]

    Ren M Q, Yan Y J, Niu X H, Tao R, Hu D, Peng R, Xie B P, Zhao J, Zhang T, Feng D L 2017 Sci. Adv. 3 e1603238

    [24]

    Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K, Zhao Z X 2012 Nature 483 67

    [25]

    Wang C H, Chen T K, Chang C C, Hsu C H, Lee Y C, Wang M J, Wu P M, Wu M K 2015 EPL 111 27004

    [26]

    Ye F, Bao W, Chi S, dos Santos A M, Molaison J J, Fang M H, Wang H D, Mao Q H, Wang J C, Liu J J, Sheng J M 2014 Chin. Phys. Lett. 31 127401

    [27]

    Fujita H, Kagayama T, Shimizu K, Yamamoto Y, Mizuki J I, Okazaki H, Takano Y 2015 J. Phys.: Conf. Ser. 592 012070

    [28]

    Izumi M, Zheng L, Sakai Y, Goto H, Sakata M, Nakamoto Y, Nguyen H L, Kagayama T, Shimizu K, Araki S, Kobayashi T C, Kambe T, Gu D, Guo J, Liu J, Li Y, Sun L, Prassides K, Kubozono Y 2015 Sci. Rep. 5 9477

    [29]

    Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, Zhao Z X 2015 Phys. Rev. B 92 064515

    [30]

    Sun S S, Wang S H, Yu R, Lei H C 2017 Phys. Rev. B 96 064512

    [31]

    Cheng J G 2017 Acta Phys. Sin. 66 037401 (in Chinese)[程金光 2017 66 037401]

    [32]

    Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, Cheng J G 2018 Nat. Commun. 9 380

    [33]

    Shahi P, Sun J P, Wang S H, Jiao Y Y, Chen K Y, Sun S S, Lei H C, Uwatoko Y, Wang B S, Cheng J G 2017 Phys. Rev. B 97 020508

    [34]

    Cheng J G, Wang B S, Sun J P, Uwatoko Y 2018 Chin. Phys. B 27 077403

    [35]

    Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G, Zhao Z 2015 J. Am. Chem. Soc. 137 66

    [36]

    Jin K, Butch N P, Kirshenbaum K, Paglione J, Greene R L 2011 Nature 476 73

    [37]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Kirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519

    [38]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Comm. 7 12146

    [39]

    Phan G N, Nakayama K, Sugawara K, Sato T, Urato T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A, Takahashi T 2017 Phys. Rev. B 95 224507

    [40]

    Iimura S, Matsuishi S, Sato H, Hanna T, Muraba Y, Kim S W, Kim J E, Takata M, Hosono H 2012 Nat. Commun. 3 943

    [41]

    Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X, Zheng G Q 2015 Chin. Phys. Lett. 32 107401

    [42]

    Das T, Panagopoulos C 2016 New J. Phys. 18 103033

    [43]

    Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G, Steglich F 2003 Science 302 2104

    [44]

    Das T, Balatsky A V 2013 New J. Phys. 15 093045

  • [1] 袁永浩, 薛其坤, 李渭. FeSe/SrTiO3高温超导体中的电子条纹相.  , 2022, 71(12): 127304. doi: 10.7498/aps.71.20220118
    [2] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱.  , 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [3] 胡江平. 探索非常规高温超导体.  , 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [4] 陈晨, 刘琴, 张童, 封东来. 电子型FeSe基高温超导体的磁通束缚态与Majorana零能模.  , 2021, 70(1): 017401. doi: 10.7498/aps.70.20201673
    [5] 孙莹, 刘寒雨, 马琰铭. 高压下富氢高温超导体的研究进展.  , 2021, 70(1): 017407. doi: 10.7498/aps.70.20202189
    [6] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介.  , 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [7] 金魁, 吴颉. 高温超导体组合薄膜和相图表征高通量方法.  , 2021, 70(1): 017403. doi: 10.7498/aps.70.20202102
    [8] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理.  , 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [9] 王乃舟, 石孟竹, 雷彬, 陈仙辉. FeSe基超导体的探索与物性研究.  , 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [10] 程金光. 高压调控的磁性量子临界点和非常规超导电性.  , 2017, 66(3): 037401. doi: 10.7498/aps.66.037401
    [11] 贺丽, 胡翔, 尹澜, 许恒毅, 徐晓林, 郭建栋, 李传义, 尹道乐. 高温超导体霍尔电阻和霍尔角在涡旋玻璃相变附近的普适标度律及统一霍尔电阻方程.  , 2009, 58(1): 417-420. doi: 10.7498/aps.58.417
    [12] 谭明秋, 陶向明, 徐小军, 何军辉, 叶高翔. MgCNi3的电子结构、光学性质与超导电性.  , 2003, 52(2): 463-467. doi: 10.7498/aps.52.463
    [13] 梁芳营. 高温超导体的热力学性质的研究.  , 2002, 51(4): 898-901. doi: 10.7498/aps.51.898
    [14] 李晓薇. 超导体/铁磁体绝缘层-超导体隧道结的直流Josephson效应.  , 2002, 51(8): 1821-1825. doi: 10.7498/aps.51.1821
    [15] 胡立发, ASulpice, PDixador, 张平祥, 李成山, 纪平, 滕鑫康, 汪金荣, 冯勇, 周廉. Bi2223带材的临界电流及交流损耗研究.  , 2002, 51(8): 1826-1831. doi: 10.7498/aps.51.1826
    [16] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜.  , 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [17] 胡立发, 周廉, 张平祥, 王金星. 高温超导体的磁化与磁滞损耗.  , 2001, 50(7): 1359-1365. doi: 10.7498/aps.50.1359
    [18] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究.  , 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
    [19] 王勇刚, 逄焕刚, 刘楣. 高温超导体的电子比热研究.  , 2000, 49(3): 548-552. doi: 10.7498/aps.49.548
    [20] 赵忠贤, 刘福绥, 韩汝珊. 复合颗粒超导体的壳层模型.  , 1979, 28(2): 222-228. doi: 10.7498/aps.28.222
计量
  • 文章访问数:  7111
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-08
  • 修回日期:  2018-07-25
  • 刊出日期:  2019-10-20

/

返回文章
返回
Baidu
map