[1] |
Zhang Hai-Song, Lu Mao-Cong, Li Zhi-Gang. An expansion effect based pseudo-boiling critical point model for supercritical CO2. Acta Physica Sinica,
2024, 73(18): 184402.
doi: 10.7498/aps.73.20240293
|
[2] |
Yuan Xiao-Juan. Effects of trimodal random magnetic field on spin dynamics of quantum Ising chain. Acta Physica Sinica,
2023, 72(8): 087501.
doi: 10.7498/aps.72.20230046
|
[3] |
Yuan Xiao-Juan, Wang Hui, Zhao Bang-Yu, Zhao Jing-Fen, Ming Jing, Geng Yan-Lei, Zhang Kai-Yu. Effects of random longitudinal magnetic field on dynamics of one-dimensional quantum Ising model. Acta Physica Sinica,
2021, 70(19): 197501.
doi: 10.7498/aps.70.20210631
|
[4] |
Liu Xiao-Hang, Wang Yi-Ning, Qu Zi-Min, Di Zeng-Ru. Opinion formation model with co-evolution of individual behavior and social environment. Acta Physica Sinica,
2019, 68(11): 118902.
doi: 10.7498/aps.68.20182254
|
[5] |
Yang Bo, Fan Min, Liu Wen-Qi, Chen Xiao-Song. Phase transition properties for the spatial public goods game with self-questioning mechanism. Acta Physica Sinica,
2017, 66(19): 196401.
doi: 10.7498/aps.66.196401
|
[6] |
Luo Zhi, Yang Guan-Qiong, Di Zeng-Ru. Opinion formation on the social networks with geographic structure. Acta Physica Sinica,
2012, 61(19): 190509.
doi: 10.7498/aps.61.190509
|
[7] |
Shao Yuan-Zhi, Zhong Wei-Rong, Lu Hua-Quan, Lei Shi-Fu. Nonequilibrium dynamic phase transition in a kinetic Ising spin system. Acta Physica Sinica,
2006, 55(4): 2057-2063.
doi: 10.7498/aps.55.2057
|
[8] |
Sun Chun-Feng. The partition function and correlation functions of the Ising model on a diamond fractal lattices. Acta Physica Sinica,
2005, 54(8): 3768-3773.
doi: 10.7498/aps.54.3768
|
[9] |
Shao Yuan-Zhi, Zhong Wei-Rong, Lin Guang-Ming. Nonequilibrium dynamic phase transition of an Ising spin system driven by various oscillating field. Acta Physica Sinica,
2004, 53(9): 3165-3170.
doi: 10.7498/aps.53.3165
|
[10] |
Shao Yuan-Zhi, Zhong Wei-Rong, Lin Guang-Ming, Li Jian-Can. Stochastic resonance of an Ising spin system driven by stochastic external field. Acta Physica Sinica,
2004, 53(9): 3157-3164.
doi: 10.7498/aps.53.3157
|
[11] |
Shao Yuan-Zhi, Zhong Wei-Rong, Lin Guang-Ming. Hysteretic scaling and dynamical phase transition of three-dimension X-Y Model. Acta Physica Sinica,
2003, 52(9): 2309-2313.
doi: 10.7498/aps.52.2309
|
[12] |
WU MU-YING, YE AI-JUN, LI ZI-BING, ZENG WEN-GUANG. SHORT-TIME CRITICAL DYNAMIC PROCESS OF TWO-LAYER ISING MODEL. Acta Physica Sinica,
2000, 49(6): 1168-1170.
doi: 10.7498/aps.49.1168
|
[13] |
ZHENG RUI-LUN, ZHAO FU-CHUAN, XIONG GUO-MING. AN IMPROVEMENT IN SELF-CONSISTENT CLUSTER METHOD FOR DETERMINING THE CRITICAL POINT IN ISING SPIN SYSTEM. Acta Physica Sinica,
1997, 46(4): 724-731.
doi: 10.7498/aps.46.724
|
[14] |
ZHANG GUO-MIN, YANG CHUAN-ZHANG. MONTE CARLO STUDY OF THE ORDER OF PHASE TRANSITION OF A MULTISPIN INTERACTIONS ISING MODEL. Acta Physica Sinica,
1993, 42(10): 1680-1683.
doi: 10.7498/aps.42.1680
|
[15] |
Teng Bao-hua. GREEN'S FUNCTION APPROACH TO 3-DIMENSIONAL ISING MODEL. Acta Physica Sinica,
1991, 40(5): 826-832.
doi: 10.7498/aps.40.826
|
[16] |
CHEN SHI-GANG. FRACTAL STRUCTURE AT THE CRITICAL POINT OF CONTINUOUS PHASE TRANSFORMATION. Acta Physica Sinica,
1991, 40(4): 584-587.
doi: 10.7498/aps.40.584
|
[17] |
OU FA, DENG WEN-JI. PHASE TRANSITIONS AT CRITICAL POINTS IN OPTICAL BISTAB1LITY. Acta Physica Sinica,
1990, 39(6): 90-97.
doi: 10.7498/aps.39.90
|
[18] |
LUAN CHANG-FU. THE UPPER LIMIT OF CRITICAL TEMPERATURE OF N DIMENSIONAL ISING MODEL. Acta Physica Sinica,
1989, 38(3): 497-501.
doi: 10.7498/aps.38.497
|
[19] |
SHI HE, HAO BAI-LIN. CLOSED-FORM APPROXIMATION FOR THE 3-DIMENSIONAL ISING MODEL (Ⅳ)——THE APPROXIMATE INTERPOLATION FORMULA FOR THE PARTITION FUNCTION. Acta Physica Sinica,
1981, 30(9): 1234-1241.
doi: 10.7498/aps.30.1234
|
[20] |
SHI HE, HAO BAI-LIN. A CLOSED-FORM APPROXIMATION FOR THE 3-DIMENSIONAL ISING MODEL (Ⅱ)——LIMITATIONS OF THE Q-APPROXIMATION. Acta Physica Sinica,
1980, 29(12): 1564-1569.
doi: 10.7498/aps.29.1564
|