-
Graphene, as a classical two-dimensional material, has various excellent physical properties, which can be further transferred into its nanocomposite. Under external fields, the nonspherical nanoparticles in liquid environment will exhibit various deterministic movements, among them is the orientation behavior. By realizing the orientation control of nanoparticles, we can, on one hand, increase the thermal conductivity of the system along the oriented direction, and on the other hand, fabricate novel nano-devices based on the nanoscale self-assembly, which may become the key components in NEMS and Lab-on-a-chip architectures. However, current studies mainly focus on the orientations of one-dimensional rod-shaped particles, like carbon nanotubes. For a two-dimensional nanoparticle, like graphene, the situation is more complex than the one-dimensional one, because two unit vectors should be defined to monitor the orientation behaviors. As far as we know, this part of research has not been extensively carried out. Thus, in this paper, the molecular dynamics method is used to study the orientation of a single uncharged rectangular graphene in water, induced by DC electric fields. We track the orientations of the normal and long-side vectors of graphene. The results show that at a relatively high electric strength of 1.0 V/nm, the graphene is preferred to orient its normal vector perpendicular and its long-side vector with a small angle(located between 0° and 30°) with respect to the electric direction, respectively. With the increase of the electric field strength, the orientation preference of the normal vector along the electric direction is increased. To explain this phenomenon, we calculate the orientation distribution of water molecules in the first hydration shell. The dipoles tend to be parallel to the electric direction, and the surfaces of water molecules tend to be parallel to the surface of graphene. These two combined effects result in the above orientation behavior of the normal vector. Another interesting phenomenon is that the decrease of the length to width ratio of graphene will cause both the orientation preferences of the normal vector and the long-side vector to decrease. By utilizing the Einstein relation, we can obtain the rotational diffusion coefficients of graphene around the normal vector and long-side vector. The qualitative results show that the orientation orders of the normal vector and long-side vector respectively have negative correlations with the rotational diffusion coefficients of the rotation around the long-side vector and the normal vector. The orientation behavior of the platelike graphene actually comes from the competing effects between its rotational Brownian motion and the external field. Increasing the strength of the external field or reducing the rotational diffusivity will both lead to an increased orientation order of the nonspherical nanoparticle.
-
Keywords:
- graphene /
- orientation /
- DC electric field /
- molecular dynamics
[1] Huang H, Liu C H, Wu Y, Fan S S 2005 Adv. Mater. 17 1652
[2] Liang Q, Yao X, Wang W, Liu Y, Wong C P 2011 ACS Nano 5 2392
[3] Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild F B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J, Pasquali M 2013 Science 339 182
[4] Liu M S, Lin M C C, Huang I T, Wang C C 2005 Int. Commun. Heat Mass Trans. 32 1202
[5] Guo X, Su J, Guo H 2012 Soft Matter 8 1010
[6] Hermanson K D, Lumsdon S O, Williams J P, Kaler E W, Velev O D 2001 Science 294 1082
[7] Hsu H Y, Sharma N, Ruoff R S, Patankar N A 2005 Nanotechnology 16 312
[8] Alexandrou I, Ang D K H, Mathur N D, Haq S, Amaratunga G A J 2004 Nano Lett. 4 2299
[9] van der Zande B M I, Koper G J M, Lekkerkerker H N W 1999 J. Phys. Chem. B 103 5754
[10] Ma C, Zhang W, Zhu Y, Ji L, Zhang R, Koratkar N, Liang J 2008 Carbon 46 706
[11] Li J, Zhang Q, Peng N, Zhu Q 2005 Appl. Phys. Lett. 86 153116
[12] Martin C A, Sandler J K W, Winder A H, Schwarz M K, Bauhofer W, Schulte K, Shaffer M S P 2005 Polymer 46 877
[13] Oliveira L, Saini D, Gaillard J B, Podila R, Rao A M, Serkiz S M 2015 Carbon 93 32
[14] Daub C D, Bratko D, Ali T, Luzar A 2009 Phys. Rev. Lett. 103 207801
[15] Cao B Y, Dong R Y 2014 J. Chem. Phys. 140 34703
[16] Dong R Y, Cao B Y 2014 Sci. Rep. 4 6120
[17] Song Y, Dai L L 2010 Mol. Simulat. 36 560
[18] Ryckaert J P, Cicotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327
[19] Won C Y, Joseph S, Aluru N R 2006 J. Chem. Phys. 125 114701
[20] Werder T, Walther J H, Jaffe R L, Halicioglu T, Noca F, Koumoutsakos P 2001 Nano Lett. 1 697
[21] Shiomi J, Maruyama S 2009 Nanotechnology 20 055708
[22] Plimpton S 1995 J. Comput. Phys. 7 1
[23] Hockney R W, Eastwood J W 1988 Computer Simulation Using Particles(New York:Taylor & Francis Group) pp267-304
[24] Djikaev Y S, Ruckenstein E 2012 J. Phys. Chem. B 116 2820
[25] Dong R Y, Cao B Y 2015 J. Nanosci. Nanotechnol. 15 2984
[26] Börzsönyi T, Szabó B, Törös G, Wegner S, Török J, Somfai E, Bien T, Stannarius R 2012 Phys. Rev. Lett. 108 228302
-
[1] Huang H, Liu C H, Wu Y, Fan S S 2005 Adv. Mater. 17 1652
[2] Liang Q, Yao X, Wang W, Liu Y, Wong C P 2011 ACS Nano 5 2392
[3] Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild F B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J, Pasquali M 2013 Science 339 182
[4] Liu M S, Lin M C C, Huang I T, Wang C C 2005 Int. Commun. Heat Mass Trans. 32 1202
[5] Guo X, Su J, Guo H 2012 Soft Matter 8 1010
[6] Hermanson K D, Lumsdon S O, Williams J P, Kaler E W, Velev O D 2001 Science 294 1082
[7] Hsu H Y, Sharma N, Ruoff R S, Patankar N A 2005 Nanotechnology 16 312
[8] Alexandrou I, Ang D K H, Mathur N D, Haq S, Amaratunga G A J 2004 Nano Lett. 4 2299
[9] van der Zande B M I, Koper G J M, Lekkerkerker H N W 1999 J. Phys. Chem. B 103 5754
[10] Ma C, Zhang W, Zhu Y, Ji L, Zhang R, Koratkar N, Liang J 2008 Carbon 46 706
[11] Li J, Zhang Q, Peng N, Zhu Q 2005 Appl. Phys. Lett. 86 153116
[12] Martin C A, Sandler J K W, Winder A H, Schwarz M K, Bauhofer W, Schulte K, Shaffer M S P 2005 Polymer 46 877
[13] Oliveira L, Saini D, Gaillard J B, Podila R, Rao A M, Serkiz S M 2015 Carbon 93 32
[14] Daub C D, Bratko D, Ali T, Luzar A 2009 Phys. Rev. Lett. 103 207801
[15] Cao B Y, Dong R Y 2014 J. Chem. Phys. 140 34703
[16] Dong R Y, Cao B Y 2014 Sci. Rep. 4 6120
[17] Song Y, Dai L L 2010 Mol. Simulat. 36 560
[18] Ryckaert J P, Cicotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327
[19] Won C Y, Joseph S, Aluru N R 2006 J. Chem. Phys. 125 114701
[20] Werder T, Walther J H, Jaffe R L, Halicioglu T, Noca F, Koumoutsakos P 2001 Nano Lett. 1 697
[21] Shiomi J, Maruyama S 2009 Nanotechnology 20 055708
[22] Plimpton S 1995 J. Comput. Phys. 7 1
[23] Hockney R W, Eastwood J W 1988 Computer Simulation Using Particles(New York:Taylor & Francis Group) pp267-304
[24] Djikaev Y S, Ruckenstein E 2012 J. Phys. Chem. B 116 2820
[25] Dong R Y, Cao B Y 2015 J. Nanosci. Nanotechnol. 15 2984
[26] Börzsönyi T, Szabó B, Törös G, Wegner S, Török J, Somfai E, Bien T, Stannarius R 2012 Phys. Rev. Lett. 108 228302
Catalog
Metrics
- Abstract views: 7883
- PDF Downloads: 465
- Cited By: 0