Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Combination of magnetic tweezers with DNA hairpin as a potential approach to the study of RecA-mediated homologous recombination

Zhang Yu-Wei Yan Yan Nong Da-Guan Xu Chun-Hua Li Ming

Citation:

Combination of magnetic tweezers with DNA hairpin as a potential approach to the study of RecA-mediated homologous recombination

Zhang Yu-Wei, Yan Yan, Nong Da-Guan, Xu Chun-Hua, Li Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Homologous recombination(HR) is essential for maintaining the genome fidelity and generating genetic diversity. As a prototypical member of the recombinases, RecA from Escherichia coli has been extensively studied by using single-molecule FRET(smFRET), magnetic tweezers, optical tweezers, etc. However, these methods cannot meet the needs of wide-ranged observations nor high spatial resolution at the same time. For sequence comparison, the average base-to-base distance of the homologous dsDNA will be stretched from 0.34 nm to 0.51 nm. The increment for per base pair is 0.17 nm, which is far beyond the spatial resolution of magnetic tweezers so that it cannot be directly measured. As a high-resolution technique, the smFRET enables us to observe more details of reactions. However, its valid measuring distance is 3-8 nm, which limits the observation range. Here, we propose an approach by combining magnetic tweezers with DNA hairpin, which may solve the problem effectively in the study of HR. In this paper, one end of the DNA molecule with a 270 bp hairpin is immobilized onto the surface of the flow cell, while a magnetic bead is attached to the other end. An external magnetic force is applied to the magnetic bead by placing a permanent magnet above the flow cell. The first 90 bp(from the junction of the hairpin) of the hairpin is homologous to the ssDNA within the ssDNA-RecA filament. Thus, the filament searches for homology along the hairpin, and incorporates into the homologous segment for strand exchange. After that, the displaced strand can be opened by pulling at a force of ~7 pN, and each opened base pair results in a 0.82 nm increase in DNA extension. By using this approach, we show that 1) RecA-mediated strand exchange proceeds in a stepwise manner and the average speed is ~7.6 nt/s, which is in accordance with previous result; 2) the dynamic interaction between the second DNA-binding site(SBS) and the displaced strand can be observed in real-time, and the binding force is calculated accurately through the x-dimensional fluctuations; 3) the processes of strand-exchange in different directions can be observed, and the directions are distinguishable through the reaction patterns. The results suggest that the combination of magnetic tweezers with DNA hairpin is a potential approach to the study of RecA or other recombinases. Therefore, our design can be an important single-molecule approach to the research of HR mechanism.
      Corresponding author: Li Ming, mingli@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11574381, 11574382).
    [1]

    Lieber M R 2010 Annu. Rev. Biochem. 79 181

    [2]

    Kowalczykowski S C, Dixon D A, Eggleston A K, Lauder S D, Rehrauer W M 2008 Nature 453 463

    [3]

    Di Capua E, Engel A, Stasiak A, Koller T 1982 J. Mol. Biol. 157 87

    [4]

    Dombroski D, Scraba D, Bradley R, Morgan A 1983 Nucleic Acids Res. 11 7487

    [5]

    Chen Z, Yang H, Pavletich N P 2008 Nature 453 489

    [6]

    Ragunathan K, Joo C, Ha T 2011 Structure 19 1064

    [7]

    Cox M M 2007 Nat. Rev. Mol. Cell Biol. 8 127

    [8]

    Lee J Y, Terakawa T, Qi Z, Steinfeld J B, Redding S, Kwon Y, Gaines W A, Zhao W, Sung P, Greene E C 2015 Science 349 977

    [9]

    Danilowicz C, Yang D, Kelley C, Prevost C, Prentiss M 2015 Nucleic Acids Res. 43 6473

    [10]

    Qi Z, Redding S, Lee J Y, Gibb B, Kwon Y, Niu H, Gaines W A, Sung P, Greene E C 2015 Cell 160 856

    [11]

    Ragunathan K, Liu C, Ha T 2008 Mol. Cell 30 530

    [12]

    de Vlaminck I, van Loenhout M T, Zweifel L, den Blanken J, Hooning K, Hage S, Kerssemakers J, Dekker C 2012 Mol. Cell 46 616

    [13]

    Roy R, Hohng S, Ha T 2008 Nat. Meth. 5 507

    [14]

    Xu Y, Chen H, Qu Y J, Efremov A K, Li M, Ouyang Z C, Liu D S, Yan J 2014 Chin. Phys. B 23 068702

    [15]

    Zhu C L, Li J 2015 Chin. Phys. Lett. 32 108702

    [16]

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703(in Chinese)[王爽, 郑海子, 赵振业, 陆越, 徐春华2013 62 168703]

    [17]

    Smith S B, Cui Y, Bustamente C 1996 Science 271 795

    [18]

    Lantsov V 1997 Proc. Natl. Acad. Sci. 94 11935

    [19]

    Mossa A, Manosas M, Forns N, Huguet J M, Ritort F 2009 J. Stat. Mech. Theory E 2009 2060

    [20]

    Mazin A V, Kowalczykowski S C 1996 Proc. Natl. Acad. Sci. 93 10673

    [21]

    Gosse C, Croquette V 2002 Biophys. J. 82 3314

    [22]

    Bustamante C, Smith S B, Liphardt J, Smith D 2000 Curr. Opin. Struct. Biol. 10 279

    [23]

    Zheng H Z, Nong D G, Li M 2013 Chin. Phys. Lett. 30 118702

    [24]

    Cox M M, Lehman I 1981 Proc. Natl. Acad. Sci. 78 6018

    [25]

    Kim J I, Cox M, Inman R 1998 Proc. Natl. Acad. Sci. 95 9843

    [26]

    Lee J, Lee S, Ragunathan K, Joo C, Ha T, Hohng S 2010 Angew. Chem. 122 10118

  • [1]

    Lieber M R 2010 Annu. Rev. Biochem. 79 181

    [2]

    Kowalczykowski S C, Dixon D A, Eggleston A K, Lauder S D, Rehrauer W M 2008 Nature 453 463

    [3]

    Di Capua E, Engel A, Stasiak A, Koller T 1982 J. Mol. Biol. 157 87

    [4]

    Dombroski D, Scraba D, Bradley R, Morgan A 1983 Nucleic Acids Res. 11 7487

    [5]

    Chen Z, Yang H, Pavletich N P 2008 Nature 453 489

    [6]

    Ragunathan K, Joo C, Ha T 2011 Structure 19 1064

    [7]

    Cox M M 2007 Nat. Rev. Mol. Cell Biol. 8 127

    [8]

    Lee J Y, Terakawa T, Qi Z, Steinfeld J B, Redding S, Kwon Y, Gaines W A, Zhao W, Sung P, Greene E C 2015 Science 349 977

    [9]

    Danilowicz C, Yang D, Kelley C, Prevost C, Prentiss M 2015 Nucleic Acids Res. 43 6473

    [10]

    Qi Z, Redding S, Lee J Y, Gibb B, Kwon Y, Niu H, Gaines W A, Sung P, Greene E C 2015 Cell 160 856

    [11]

    Ragunathan K, Liu C, Ha T 2008 Mol. Cell 30 530

    [12]

    de Vlaminck I, van Loenhout M T, Zweifel L, den Blanken J, Hooning K, Hage S, Kerssemakers J, Dekker C 2012 Mol. Cell 46 616

    [13]

    Roy R, Hohng S, Ha T 2008 Nat. Meth. 5 507

    [14]

    Xu Y, Chen H, Qu Y J, Efremov A K, Li M, Ouyang Z C, Liu D S, Yan J 2014 Chin. Phys. B 23 068702

    [15]

    Zhu C L, Li J 2015 Chin. Phys. Lett. 32 108702

    [16]

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703(in Chinese)[王爽, 郑海子, 赵振业, 陆越, 徐春华2013 62 168703]

    [17]

    Smith S B, Cui Y, Bustamente C 1996 Science 271 795

    [18]

    Lantsov V 1997 Proc. Natl. Acad. Sci. 94 11935

    [19]

    Mossa A, Manosas M, Forns N, Huguet J M, Ritort F 2009 J. Stat. Mech. Theory E 2009 2060

    [20]

    Mazin A V, Kowalczykowski S C 1996 Proc. Natl. Acad. Sci. 93 10673

    [21]

    Gosse C, Croquette V 2002 Biophys. J. 82 3314

    [22]

    Bustamante C, Smith S B, Liphardt J, Smith D 2000 Curr. Opin. Struct. Biol. 10 279

    [23]

    Zheng H Z, Nong D G, Li M 2013 Chin. Phys. Lett. 30 118702

    [24]

    Cox M M, Lehman I 1981 Proc. Natl. Acad. Sci. 78 6018

    [25]

    Kim J I, Cox M, Inman R 1998 Proc. Natl. Acad. Sci. 95 9843

    [26]

    Lee J, Lee S, Ragunathan K, Joo C, Ha T, Hohng S 2010 Angew. Chem. 122 10118

  • [1] Zhang Zhi-Peng, Liu Shuai, Zhang Yu-Qiong, Xiong Ying, Han Wei-Jing, Chen Tong-Sheng, Wang Shuang. Rotation manipulation of single-molecule magnetic trapping and gene transcription regulation dynamics. Acta Physica Sinica, 2023, 72(21): 218701. doi: 10.7498/aps.72.20231089
    [2] Zhang Yu-Hang, Xue Zhen-Yong, Sun Hao, Zhang Zhu-Wei, Chen Hu. Single molecule magnetic tweezers for unfolding dynamics of Acyl-CoA binding protein. Acta Physica Sinica, 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [3] Jia Qi, Fan Qin-Kai, Hou Wen-Qing, Yang Chen-Guang, Wang Li-Bang, Wang Hao, Xu Chun-Hua, Li Ming, Lu Ying. Control of DNA polymerase gp5 chain substitution by DNA double strand annealing pressure. Acta Physica Sinica, 2021, 70(15): 158701. doi: 10.7498/aps.70.20210707
    [4] Zhu Ji-Lin, Gao Dong-Bao, Zeng Xin-Wu. In-plane manipulation of single particle based on phase-modulating acoustic tweezer. Acta Physica Sinica, 2021, 70(21): 214302. doi: 10.7498/aps.70.20210981
    [5] Huang Xing-Yuan, Sui Ming-Yu, Hou Wen-Qing, Li Ming, Lu Ying, Xu Chun-Hua. Stepwise strand exchange during RecA-induced homologous recombination. Acta Physica Sinica, 2020, 69(20): 208706. doi: 10.7498/aps.69.20200959
    [6] Ma Jian-Bing, Zhai Yong-Liang, Nong Da-Guan, Li Jing-Hua, Fu Hang, Zhang Xing-Hua, Li Ming, Lu Ying, Xu Chun-Hua. Single molecule transverse magnetic tweezers based on light sheet illumination. Acta Physica Sinica, 2018, 67(14): 148702. doi: 10.7498/aps.67.20180441
    [7] Chen Ze, Ma Jian-Bing, Huang Xing-Yuan, Jia Qi, Xu Chun-Hua, Zhang Hui-Dong, Lu Ying. T7 helicase unwinding and stand switching investigated via single-molecular technology. Acta Physica Sinica, 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
    [8] Teng Cui-Juan, Lu Yue, Ma Jian-Bing, Li Ming, Lu Ying, Xu Chun-Hua. Interaction between Sso7d and DNA studied by single-molecule technique. Acta Physica Sinica, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [9] Zhao Zhen-Ye, Xu Chun-Hua, Li Jing-Hua, Huang Xing-Yuan, Ma Jian-Bing, Lu Ying. Study of Bloom resolving G-quadruplex process by using high resolution magnetic tweezer with illumination of total internal reflection. Acta Physica Sinica, 2017, 66(18): 188701. doi: 10.7498/aps.66.188701
    [10] Xiao Shi-Yan, Liang Hao-Jun. DNA and DNA computation based on toehold-mediated strand-displacement reactions. Acta Physica Sinica, 2016, 65(17): 178106. doi: 10.7498/aps.65.178106
    [11] Qian Hui, Chen Hu, Yan Jie. Frontier of soft matter experimental technique: single molecular manipulation. Acta Physica Sinica, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [12] Cao Bo-Zhi, Lin Yu, Wang Yan-Wei, Yang Guang-Can. Single molecular study on interactions between avidin and DNA. Acta Physica Sinica, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [13] Geng Du-Yan, Xie Hong-Juan, Wan Xiao-Wei, Xu Gui-Zhi. Study on regulatory network of proteins based on DNA damage. Acta Physica Sinica, 2014, 63(1): 018702. doi: 10.7498/aps.63.018702
    [14] Wang Shuang, Zheng Hai-Zi, Zhao Zhen-Ye, Lu Yue, Xu Chun-Hua. A pair of high resolution magnetic tweezers with illumination of total reflection evanescent field and its application in the study of DNA helicases. Acta Physica Sinica, 2013, 62(16): 168703. doi: 10.7498/aps.62.168703
    [15] Ran Shi-Yong. Brownian motion in a harmonic trap: magnetic tweezers experiment and its simulation. Acta Physica Sinica, 2012, 61(17): 170503. doi: 10.7498/aps.61.170503
    [16] Pang Zhe, Wang Shuang, Li Hui, Xu Chun-Hua, Li Ming. A study on the mechanism of RecA in homologous recognition by using single molecule fluorescence tracking. Acta Physica Sinica, 2012, 61(21): 218701. doi: 10.7498/aps.61.218701
    [17] Zhang Xing-Hua, Xiao Bin, Hou Xi-Miao, Xu Chun-Hua, Wang Peng-Ye, Li Ming. Study of cisplatin-induced DNA compaction using single molecule magnetic tweezers. Acta Physica Sinica, 2009, 58(6): 4301-4306. doi: 10.7498/aps.58.4301
    [18] Gao Xu-Tuan, Fu Xue, Song Jun, Liu De-Sheng, Xie Shi-Jie. Effect of lattice site position fluctuation on the electronic structure of DNA. Acta Physica Sinica, 2006, 55(2): 952-956. doi: 10.7498/aps.55.952
    [19] Ma Song-Shan, Xu Hui, Liu Xiao-Liang, Guo Ai-Min. Characteristics of the electronic structure of DNA sequence. Acta Physica Sinica, 2006, 55(6): 3170-3174. doi: 10.7498/aps.55.3170
    [20] Wei Zhi-Yong, Zang Li-Hui, Li Ming, Fan Wo, Xu Yu-Jie. Fragmentation in DNA double-strand breaks. Acta Physica Sinica, 2005, 54(10): 4955-4960. doi: 10.7498/aps.54.4955
Metrics
  • Abstract views:  6678
  • PDF Downloads:  255
  • Cited By: 0
Publishing process
  • Received Date:  22 July 2016
  • Accepted Date:  12 August 2016
  • Published Online:  05 November 2016

/

返回文章
返回
Baidu
map