搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用全内反射瞬逝场照明磁镊研究Bloom解旋G-四联体

赵振业 徐春华 李菁华 黄星榞 马建兵 陆颖

引用本文:
Citation:

用全内反射瞬逝场照明磁镊研究Bloom解旋G-四联体

赵振业, 徐春华, 李菁华, 黄星榞, 马建兵, 陆颖

Study of Bloom resolving G-quadruplex process by using high resolution magnetic tweezer with illumination of total internal reflection

Zhao Zhen-Ye, Xu Chun-Hua, Li Jing-Hua, Huang Xing-Yuan, Ma Jian-Bing, Lu Ying
PDF
导出引用
  • G-四联体(G-quadruplex,G4)是广泛存在于细胞基因组中的一种DNA结构,在DNA的代谢如复制、转录、同源重组等过程中起重要作用.G4解旋酶近年来受到广泛研究,其中Bloom(BLM)解旋酶的研究已经相当丰富,但仍有一些基本问题不清楚.我们应用全内反射瞬逝场照明磁镊对BLM解旋G4的动力学过程进行了深入研究,观察到了BLM解旋G4的分步过程.相对于单分子荧光共振能量转移技术而言,借助磁镊的长时间观测性能,我们在近饱和三磷酸腺苷(ATP)浓度的实验体系中观察到BLM长时间反复解开G4或者长时间维持G4于打开状态的两种作用方式.最后,使用相同的实验条件做了单分子荧光共振能量转移实验,确定了加载2–3 pN的外力对BLM解旋G4没有显著影响.
    G-quadruplex (G4) is a DNA structure which commonly exists in human genome, and it is considered as an important structure in DNA metabolism such as replication, transcription and homologous recombination. The G-quadruplex helicases have been widely investigated these years. Of them, the Bloom (BLM) helicase is most thoroughly studied. However, there are some basic problems that are still unclear. Most of previous studies of G4 are performed by single molecule fluorescence resonance energy transfer technique. The G4 is in a free state in these experiments, which is different from the physiological environment in cells. The traditional magnetic tweezers have a limitation of spatial resolution in a low force circumstance. Thus here we use high resolution magnetic tweezer under the illumination of total internal reflection fluorescence to study the process of BLM resolving G4. Our modification of magnetic tweezer is to separate the measurements of force and distance of magnetic tweezer in order to improve the spatial resolution, which allows us to observe the unfolding process of G4. With a 2-3 pN force we find that the process of BLM unfolding G4 in low ATP concentration is stepwise, and the G4 is mainly in the state between G-quadruplex and G-triplex. We also find that the BLM could interact with G4 for a long time. Our apparatus is also able to obtain the long time observation results compared with the single molecule fluorescence technique. So we perform experiments with a nearly saturated ATP concentration. We find that the BLM has two ways to maintain G4 dissolution in this condition. The BLM could unfold the G4 repetitively in a long period and it could also keep the G4 in unfolding state for a long time after it has opened the G4. Finally, we also perform single molecule fluorescence resonance energy transfer experiment in the same condition, and we find that the 2-3 pN force in magnetic tweezers has a rare influence on the process of BLM interacting with G4. The results of single molecule fluorescence resonance energy transfer experiments are corresponding to the results of magnetic tweezer in the same conditions. All of our experimental results show that ATP dependent BLM has a high affinity with G4 and BLM has a different way to resolve G4 in high ATP concentration. These results could provide new ideas of the mechanism of BLM resolving G4. Our modified magnetic tweezer shows its capacity in G4 single molecule study, and it could be a useful tool in the future single molecule studies.
      通信作者: 陆颖, yinglu@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11674382,11574381)资助的课题.
      Corresponding author: Lu Ying, yinglu@iphy.ac.cn
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 11674382, 11574381).
    [1]

    Phan A T 2010 FEBS J. 277 1107

    [2]

    Maizels N, Gray L T 2013 PLoS Genet. 9 1003468

    [3]

    Noer S L, Preus S, Gudnason D, Aznauryan M, Mergny J L, Birkedal V 2016 Nucl. Acids Res. 44 464

    [4]

    Lim K W, Amrane S, Bouaziz S, Xu W X, Mu Y G, Patel D J, Luu K N, Phan A T 2009 J. Am. Chem. Soc. 131 4301

    [5]

    Hansel R, Lohr F, Trantirek L, Dotsch V 2013 J. Am. Chem. Soc. 135 2816

    [6]

    Li W, Hou X M, Wang P Y, Xi X G, Li M 2013 J. Am. Chem. Soc. 135 6423

    [7]

    Koirala D, Mashimo T, Sannohe Y, Yu Z, Mao H, Sugiyama H 2012 Chem. Commun. 48 2006

    [8]

    Balasubramanian S, Neidle S 2009 Curr. Opin. Chem. Biol. 13 345

    [9]

    Huppert J L, Balasubramanian S 2005 Nucl. Acids Res. 33 2908

    [10]

    Todd A K, Johnston M, Neidle S 2005 Nucl. Acids Res. 33 2901

    [11]

    Croteau D L, Popuri V, Opresko P L, Bohr V A 2014 Annu. Rev. Biochem. 83 519

    [12]

    Cheok C F, Bachrati C Z, Chan K L, Ralf C, Wu L, Hickson I D 2005 Biochem. Soc. Trans. 33 1456

    [13]

    Goto M 2000 Clin. Exp. Rheumatol. 18 760

    [14]

    Lindor N M, Furuichi Y, Kitao S, Shimamoto A, Arndt C, Jalal S 2000 Am. J. Med. Genet. 90 223

    [15]

    German J, Sanz M A, Ciocci S, Ye T Z, Ellis N A 2007 Hum. Mutat. 28 743

    [16]

    Ellis N A, Groden J, Ye T Z, Straughen J, Lennon D J, Ciocci S, Proytcheva M, German J 1995 Cell 83 655

    [17]

    Wu L, Hickson I D 2003 Nature 426 870

    [18]

    Xu Y N, Bazeille N, Ding X Y, Lu X M, Wang P Y, Bugnard E, Grondin V, Dou S X, Xi X G 2012 Nucl. Acids Res. 40 9802

    [19]

    Sun H, Karow J K, Hickson I D, Maizels N 1998 J. Biol. Chem. 273 27587

    [20]

    Budhathoki J B, Ray S, Urban V, Janscak P, Yodh J G, Balci H 2014 Nucl. Acids Res. 42 11528

    [21]

    Chatterjee S, Zagelbaum J, Savitsky P, Sturzenegger A, Huttner D, Janscak P, Hickson I D, Gileadi O, Rothenberg E 2014 Nat. Commun. 5 5556

    [22]

    Tippana R, Hwang H, Opresko P L, Bohr V A, Myong S 2016 Proc. Natl. Acad. Sci. USA 113 8448

    [23]

    Wu W Q, Hou X M, Li M, Dou S X, Xi X G 2015 Nucl. Acids Res. 43 4614

    [24]

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703(in Chinese)[王爽, 郑海子, 赵振业, 陆越, 徐春华2013 62 168703]

    [25]

    Boncina M, Lah J, Prislan I, Vesnaver G 2012 J. Am. Chem. Soc. 134 9657

    [26]

    Ambrus A, Chen D, Dai J X, Bialis T, Jones R A, Yang D Z 2006 Nucl. Acids Res. 34 2723

    [27]

    Manosas M, Xi X G, Bensimon D, Croquette V 2010 Nucl. Acids Res. 38 5518

    [28]

    Roy R, Hohng S, Ha T 2008 Nat. Meth. 5 507

  • [1]

    Phan A T 2010 FEBS J. 277 1107

    [2]

    Maizels N, Gray L T 2013 PLoS Genet. 9 1003468

    [3]

    Noer S L, Preus S, Gudnason D, Aznauryan M, Mergny J L, Birkedal V 2016 Nucl. Acids Res. 44 464

    [4]

    Lim K W, Amrane S, Bouaziz S, Xu W X, Mu Y G, Patel D J, Luu K N, Phan A T 2009 J. Am. Chem. Soc. 131 4301

    [5]

    Hansel R, Lohr F, Trantirek L, Dotsch V 2013 J. Am. Chem. Soc. 135 2816

    [6]

    Li W, Hou X M, Wang P Y, Xi X G, Li M 2013 J. Am. Chem. Soc. 135 6423

    [7]

    Koirala D, Mashimo T, Sannohe Y, Yu Z, Mao H, Sugiyama H 2012 Chem. Commun. 48 2006

    [8]

    Balasubramanian S, Neidle S 2009 Curr. Opin. Chem. Biol. 13 345

    [9]

    Huppert J L, Balasubramanian S 2005 Nucl. Acids Res. 33 2908

    [10]

    Todd A K, Johnston M, Neidle S 2005 Nucl. Acids Res. 33 2901

    [11]

    Croteau D L, Popuri V, Opresko P L, Bohr V A 2014 Annu. Rev. Biochem. 83 519

    [12]

    Cheok C F, Bachrati C Z, Chan K L, Ralf C, Wu L, Hickson I D 2005 Biochem. Soc. Trans. 33 1456

    [13]

    Goto M 2000 Clin. Exp. Rheumatol. 18 760

    [14]

    Lindor N M, Furuichi Y, Kitao S, Shimamoto A, Arndt C, Jalal S 2000 Am. J. Med. Genet. 90 223

    [15]

    German J, Sanz M A, Ciocci S, Ye T Z, Ellis N A 2007 Hum. Mutat. 28 743

    [16]

    Ellis N A, Groden J, Ye T Z, Straughen J, Lennon D J, Ciocci S, Proytcheva M, German J 1995 Cell 83 655

    [17]

    Wu L, Hickson I D 2003 Nature 426 870

    [18]

    Xu Y N, Bazeille N, Ding X Y, Lu X M, Wang P Y, Bugnard E, Grondin V, Dou S X, Xi X G 2012 Nucl. Acids Res. 40 9802

    [19]

    Sun H, Karow J K, Hickson I D, Maizels N 1998 J. Biol. Chem. 273 27587

    [20]

    Budhathoki J B, Ray S, Urban V, Janscak P, Yodh J G, Balci H 2014 Nucl. Acids Res. 42 11528

    [21]

    Chatterjee S, Zagelbaum J, Savitsky P, Sturzenegger A, Huttner D, Janscak P, Hickson I D, Gileadi O, Rothenberg E 2014 Nat. Commun. 5 5556

    [22]

    Tippana R, Hwang H, Opresko P L, Bohr V A, Myong S 2016 Proc. Natl. Acad. Sci. USA 113 8448

    [23]

    Wu W Q, Hou X M, Li M, Dou S X, Xi X G 2015 Nucl. Acids Res. 43 4614

    [24]

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703(in Chinese)[王爽, 郑海子, 赵振业, 陆越, 徐春华2013 62 168703]

    [25]

    Boncina M, Lah J, Prislan I, Vesnaver G 2012 J. Am. Chem. Soc. 134 9657

    [26]

    Ambrus A, Chen D, Dai J X, Bialis T, Jones R A, Yang D Z 2006 Nucl. Acids Res. 34 2723

    [27]

    Manosas M, Xi X G, Bensimon D, Croquette V 2010 Nucl. Acids Res. 38 5518

    [28]

    Roy R, Hohng S, Ha T 2008 Nat. Meth. 5 507

  • [1] 张志鹏, 刘帅, 张玉琼, 熊影, 韩伟静, 陈同生, 王爽. 单分子磁镊旋转操控和基因转录调控动力学.  , 2023, 72(21): 218701. doi: 10.7498/aps.72.20231089
    [2] 张宇航, 薛振勇, 孙皓, 张珠伟, 陈虎. 酰基辅酶A结合蛋白去折叠动力学的单分子磁镊研究.  , 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [3] 马贝贝, 王凡, 林玲, 朱涛, 蒋中英. 全内反射荧光显微研究磷脂支撑膜形成中的片层前沿成长.  , 2022, 71(16): 168701. doi: 10.7498/aps.71.20220309
    [4] 邬融, 孙明营, 周申蕾, 乔战峰, 华能. 衍射波导用于大视场角的物理问题.  , 2020, 69(23): 234209. doi: 10.7498/aps.69.20200835
    [5] 杨晨, 左冠华, 田壮壮, 张玉驰, 张天才. 线极化Bell-Bloom测磁系统中抽运光对磁场灵敏度的影响.  , 2019, 68(9): 090701. doi: 10.7498/aps.68.20190030
    [6] 马建兵, 翟永亮, 农大官, 李菁华, 付航, 张兴华, 李明, 陆颖, 徐春华. 基于片层光照明的新型单分子横向磁镊.  , 2018, 67(14): 148702. doi: 10.7498/aps.67.20180441
    [7] 滕翠娟, 陆越, 马建兵, 李明, 陆颖, 徐春华. 用单分子技术研究Sso7d与DNA的相互作用.  , 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [8] 陈泽, 马建兵, 黄星榞, 贾棋, 徐春华, 张慧东, 陆颖. 单分子技术研究T7解旋酶的解旋与换链.  , 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
    [9] 曹博智, 林瑜, 王艳伟, 杨光参. 抗生物素蛋白与DNA相互作用的单分子研究.  , 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [10] 钱辉, 陈虎, 严洁. 软物质实验方法前沿:单分子操控技术.  , 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [11] 张宇微, 颜燕, 农大官, 徐春华, 李明. 磁镊结合DNA发夹的方法在RecA蛋白介导的同源重组机制研究中的潜在应用.  , 2016, 65(21): 218702. doi: 10.7498/aps.65.218702
    [12] 邬融, 田玉婷, 赵东峰, 李大为, 华能, 邵平. 透射衍射光栅内全反射级次.  , 2016, 65(5): 054202. doi: 10.7498/aps.65.054202
    [13] 王爽, 郑海子, 赵振业, 陆越, 徐春华. 全内反射瞬逝场照明高精度磁镊及其在DNA解旋酶研究中的应用.  , 2013, 62(16): 168703. doi: 10.7498/aps.62.168703
    [14] 冉诗勇. 谐振势阱中的布朗运动——磁镊实验与模拟.  , 2012, 61(17): 170503. doi: 10.7498/aps.61.170503
    [15] 张军, 于天宝, 刘念华, 廖清华, 何灵娟. 全内反射型三角晶格光子晶体多模波导中的光传播特性.  , 2011, 60(10): 104217. doi: 10.7498/aps.60.104217
    [16] 张兴华, 肖彬, 侯锡苗, 徐春华, 王鹏业, 李明. 用单分子磁镊研究顺铂导致的DNA凝聚.  , 2009, 58(6): 4301-4306. doi: 10.7498/aps.58.4301
    [17] 吴英才, 顾铮. 激励表面等离子共振的金属薄膜最佳厚度分析.  , 2008, 57(4): 2295-2299. doi: 10.7498/aps.57.2295
    [18] 项元江, 文双春, 唐康凇. 含单负介质层受阻全内反射结构的光子隧穿现象研究.  , 2006, 55(6): 2714-2719. doi: 10.7498/aps.55.2714
    [19] 王琛, 王桂英, 徐至展. 全内反射荧光显微术应用于单分子荧光的纵向成像.  , 2004, 53(5): 1325-1330. doi: 10.7498/aps.53.1325
    [20] 王 琛, 袁景和, 王桂英, 徐至展. 入射光的偏振特性对全内反射荧光显微术中荧光激发的影响.  , 2003, 52(12): 3014-3019. doi: 10.7498/aps.52.3014
计量
  • 文章访问数:  6058
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-05-18
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map