搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗生物素蛋白与DNA相互作用的单分子研究

曹博智 林瑜 王艳伟 杨光参

引用本文:
Citation:

抗生物素蛋白与DNA相互作用的单分子研究

曹博智, 林瑜, 王艳伟, 杨光参

Single molecular study on interactions between avidin and DNA

Cao Bo-Zhi, Lin Yu, Wang Yan-Wei, Yang Guang-Can
PDF
导出引用
  • 抗生物素蛋白(avidin)在生物单分子实验中被广泛用于DNA与修饰表面的连接, 同时avidin也可作为一种DNA载体用于基因治疗中. 本文利用原子力显微镜(AFM)、动态光散射(DLS)、 单分子磁镊(MT)技术系统地研究了avidin与DNA之间的相互作用, 以及avidin引起DNA凝聚的机理. 首先通过AFM对avidin-DNA复合体形貌进行观察, 发现不但有avidin导致DNA凝聚的环状形貌, 同时也存在avidin自身聚集引起的DNA凝聚现象, 通过定量分析, 发现其凝聚尺寸越来越小, 而当avidin浓度大于2 ngL-1时, 其凝聚尺寸又突然变大. DLS实验结果也显示了同样的规律, 伴随着avidin浓度的升高, DNA的粒径大小从大约170 nm减小到125 nm左右, 其电泳迁移率由-2.76(10-4 cm2V-1s-1) 变化到-0.1(10-4 cm2V-1s-1). 此外, 通过MT技术的力谱曲线变化, 发现avidin导致的DNA凝聚与其他多价离子相比, 长度的变化曲线几乎呈线性变化, 偶尔存在少而小的阶跃, 这种变化趋势与组蛋白的变化曲线更相似. 因此可以判断, avidin 导致DNA凝聚是由avidin与DNA的静电吸引和avidin自身聚集两种相互作用引起的.
    Avidin is a common basic protein, widely used for connecting DNA and modified surface in single-molecule techniques of biophysics, and it can also be used as a DNA vector in gene therapy. Avidin is highly positively charged and can condense DNA in solution. Understanding the physical mechanism of its condensing DNA is a key factor to promote avidin-DNA complex to be used for many purposes, such as a probe of biomacromlecules, signal enhancer or carrier of disease diagnosis.In the present study, we use atomic force microscope (AFM), dynamic light scattering (DLS), and single molecular magnetic tweezers (MT) to systematically investigate the interaction between DNA and avidin and the underlying mechanism of DNA condensation by avidin. The conformation of DNA-avidin complex is observed and measured by AFM and we find that the condensation includes two types: one is toroidal condensation of DNA induced by avidin, the other is the condensing structure by avidin compaction. Quantitative analysis shows that the size of avidin-DNA complex decreases monotonically with the concentration of avidin increasing. However, when the concentration of avidin reaches up to a critical value of 2 ngL-1, the size of complex begins to increase suddenly with avidin concentration increasing. The phenomenon is also confirmed by the corresponding DLS measurements. For example, when the concentration of avidin increases from 0 to 2 ngL-1, the size of condensed avidin-DNA complex reduces from 170 nm to about 125 nm. In the mean while, its electrophoretic mobility changes from -2.76 (10-4cm2V-1s-1) to -0.1 (10-4 cm2V-1s-1). The negative charge of DNA is mostly neutralized by avidin. From their force spectroscopy measured by MT, it is found that the extension of DNA varies almost linearly and a few stairlike jumps appear occasionally. For example, its characteristic trend is quite similar to the one by histones. The condensing force of DNA by avidin grows up with the concentration of avidin increasing. The statistics of force-extension curves by MT shows that the peak of unraveling steps of avidin-DNA complex is around 160 nm, which corresponds to the typical toroidal structure of DNA.In DNA condensation by avidin, electrostatic interaction plays a key role due to the neutralization of negatively charged phosphate groups of DNA by cationic avidin. From the comprehensive data by AFM, DLS and MT, we conclude that the process of DNA condensation induced by avidin consists of two mechnisms: the predominant DNA-avidin electrostatic attraction and the ancillary avidin aggregation.
      通信作者: 杨光参, yanggc@wzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274245,11574232)、国家自然科学基金青年科学基金(批准号:11304232)、浙江省自然科学基金面上项目(批准号:LY14F050008)和温州大学创新基金(批准号:3162014036)资助的课题.
      Corresponding author: Yang Guang-Can, yanggc@wzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274245, 11574232), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11304232), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY14F050008), and the Innovation Fund of Wenzhou University, China (Grant No. 3162014036).
    [1]

    Schiessel H 2003 J. Phys.: Condens. Matter 15 R699

    [2]

    Kubčkov A, Kř'ižek T, Coufal P, Vazdar M, Wernersson E, Heyda J, Jungwirth P 2012 Phys. Rev. Lett. 108 186101

    [3]

    Cortini R, Car B R, Victor J M, Barbi M 2015 J. Chem. Phys. 142 105102

    [4]

    Yoo J, Aksimentiev A 2016 Nucleic Acids Res. 44 2036

    [5]

    Bloomfield V A 1997 Biopolymers 44 269

    [6]

    Mohanty U, Ninham B W, Oppenheim I 1996 Proc. Natl. Acad. Sci. U.S.A. 93 4342

    [7]

    Akinchina A, Linse P 2002 Macromolecules 35 5183

    [8]

    Manning G S 1978 Q. Rev. Biophys. 11 179

    [9]

    Besteman K, Van E K, Lemay S 2007 Nat. Phys. 3 641

    [10]

    Grosberg A Y, Nguyen T T, Shklovskii B I 2002 Rev. Mod. Phys. 74 329

    [11]

    Besteman K, Hage S, Dekker N H, Lemay S G 2007 Phys. Rev. Lett. 98 058103

    [12]

    Lin Y, Yang G C, Wang Y W 2013 Acta Phys. Sin. 62 118702 (in Chinese) [林瑜, 杨光参, 王艳伟 2013 62 118702]

    [13]

    Murayama Y, Wada H, Sano M 2007 Europhys. Lett. 79 58001

    [14]

    Zhang X H, Xiao B, Hou X M, Xu C H, Wang P Y, Li M 2009 Acta Phys. Sin. 58 4301 (in Chinese) [张兴华, 肖彬, 侯锡苗, 徐春华, 王鹏业, 李明 2009 58 4301]

    [15]

    Hou X M, Zhang X H, Wei K J, Ji C, Dou S X, Wang W C, Li M, Wang P Y 2010 Physics 39 108 (in Chinese) [侯锡苗, 张兴华, 魏孔吉, 季超, 窦硕星, 王渭池, 李明, 王鹏业 2010 物理 39 108]

    [16]

    Wang Y W, Ran S Y, Man B Y, Yang G C 2011 Soft Matte 7 4425

    [17]

    Qiu S X, Wang Y W, Cao B Z, Guo Z L, Chen Y, Yang G C 2015 Soft Matter 11 4099

    [18]

    Fraenkel-Conrat H, Snell N S, Ducay E D 1952 Arch. Biochem. Biophys. 39 80

    [19]

    Pignatto M, Realdon N, Morpurgo M 2010 Bioconjugate Chem. 21 1254

    [20]

    Morpurgo M, Facchin S, Pignatto M, Silvestri D, Casarin E, Realdon N 2012 Anal. Chem. 84 3433

    [21]

    Bigini P, Previdi S, Casarin E, Silvestri D, Violatto M B, Facchin S, Sitia L, Rosato A, Zuccolotto G, Realdon N, Fiordaliso F, Salmona M, Morpurgo M 2013 ACS Nano. 8 175

    [22]

    Buda A, Facchin S, Dassie E, Casarin E, Jepson M A, Neumann H, Hatem G, Realdon S, D'Inc R, Sturniolo G C, Morpurgo M 2015 Int. J. Nanomed. 10 399

    [23]

    Morpurgo M, Radu A, Bayer E A, Wilchek M 2004 J. Mol. Recognit. 17 558

    [24]

    Pastr D, Hamon L, Sorel I, Cam L E, Curmi P A, Pitrement O 2010 Langmuir 26 2618

    [25]

    Wang Y W, Ran S Y, Yang G C 2014 Sci. Rep. 4 15040

    [26]

    Fu W B, Wang X L, Zhang X H, Ran S Y, Yan J, Li M 2006 J. Am. Chem. Soc. 128 15040

    [27]

    Liu Y Y, Dou S X, Wang P Y, Xie P, Wang W C 2005 Acta Phys. Sin. 54 622 (in Chinese) [刘玉颖, 窦硕星, 王鹏业, 谢平, 王渭池 2005 54 622]

    [28]

    Ran S Y, Wang X L, Fu W B, Lai Z H, Wang W C, Liu X Q, Mai Z H, Li M 2006 Chin. Phys. Lett. 23 504

  • [1]

    Schiessel H 2003 J. Phys.: Condens. Matter 15 R699

    [2]

    Kubčkov A, Kř'ižek T, Coufal P, Vazdar M, Wernersson E, Heyda J, Jungwirth P 2012 Phys. Rev. Lett. 108 186101

    [3]

    Cortini R, Car B R, Victor J M, Barbi M 2015 J. Chem. Phys. 142 105102

    [4]

    Yoo J, Aksimentiev A 2016 Nucleic Acids Res. 44 2036

    [5]

    Bloomfield V A 1997 Biopolymers 44 269

    [6]

    Mohanty U, Ninham B W, Oppenheim I 1996 Proc. Natl. Acad. Sci. U.S.A. 93 4342

    [7]

    Akinchina A, Linse P 2002 Macromolecules 35 5183

    [8]

    Manning G S 1978 Q. Rev. Biophys. 11 179

    [9]

    Besteman K, Van E K, Lemay S 2007 Nat. Phys. 3 641

    [10]

    Grosberg A Y, Nguyen T T, Shklovskii B I 2002 Rev. Mod. Phys. 74 329

    [11]

    Besteman K, Hage S, Dekker N H, Lemay S G 2007 Phys. Rev. Lett. 98 058103

    [12]

    Lin Y, Yang G C, Wang Y W 2013 Acta Phys. Sin. 62 118702 (in Chinese) [林瑜, 杨光参, 王艳伟 2013 62 118702]

    [13]

    Murayama Y, Wada H, Sano M 2007 Europhys. Lett. 79 58001

    [14]

    Zhang X H, Xiao B, Hou X M, Xu C H, Wang P Y, Li M 2009 Acta Phys. Sin. 58 4301 (in Chinese) [张兴华, 肖彬, 侯锡苗, 徐春华, 王鹏业, 李明 2009 58 4301]

    [15]

    Hou X M, Zhang X H, Wei K J, Ji C, Dou S X, Wang W C, Li M, Wang P Y 2010 Physics 39 108 (in Chinese) [侯锡苗, 张兴华, 魏孔吉, 季超, 窦硕星, 王渭池, 李明, 王鹏业 2010 物理 39 108]

    [16]

    Wang Y W, Ran S Y, Man B Y, Yang G C 2011 Soft Matte 7 4425

    [17]

    Qiu S X, Wang Y W, Cao B Z, Guo Z L, Chen Y, Yang G C 2015 Soft Matter 11 4099

    [18]

    Fraenkel-Conrat H, Snell N S, Ducay E D 1952 Arch. Biochem. Biophys. 39 80

    [19]

    Pignatto M, Realdon N, Morpurgo M 2010 Bioconjugate Chem. 21 1254

    [20]

    Morpurgo M, Facchin S, Pignatto M, Silvestri D, Casarin E, Realdon N 2012 Anal. Chem. 84 3433

    [21]

    Bigini P, Previdi S, Casarin E, Silvestri D, Violatto M B, Facchin S, Sitia L, Rosato A, Zuccolotto G, Realdon N, Fiordaliso F, Salmona M, Morpurgo M 2013 ACS Nano. 8 175

    [22]

    Buda A, Facchin S, Dassie E, Casarin E, Jepson M A, Neumann H, Hatem G, Realdon S, D'Inc R, Sturniolo G C, Morpurgo M 2015 Int. J. Nanomed. 10 399

    [23]

    Morpurgo M, Radu A, Bayer E A, Wilchek M 2004 J. Mol. Recognit. 17 558

    [24]

    Pastr D, Hamon L, Sorel I, Cam L E, Curmi P A, Pitrement O 2010 Langmuir 26 2618

    [25]

    Wang Y W, Ran S Y, Yang G C 2014 Sci. Rep. 4 15040

    [26]

    Fu W B, Wang X L, Zhang X H, Ran S Y, Yan J, Li M 2006 J. Am. Chem. Soc. 128 15040

    [27]

    Liu Y Y, Dou S X, Wang P Y, Xie P, Wang W C 2005 Acta Phys. Sin. 54 622 (in Chinese) [刘玉颖, 窦硕星, 王鹏业, 谢平, 王渭池 2005 54 622]

    [28]

    Ran S Y, Wang X L, Fu W B, Lai Z H, Wang W C, Liu X Q, Mai Z H, Li M 2006 Chin. Phys. Lett. 23 504

  • [1] 张宇航, 薛振勇, 孙皓, 张珠伟, 陈虎. 酰基辅酶A结合蛋白去折叠动力学的单分子磁镊研究.  , 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [2] 孟菁饴, 卢红伟, 马世乐, 张嘉奇, 何富民, 苏伟涛, 赵晓东, 田婷, 王翼, 邢誉. 功能化原子力显微镜在纳米电介质材料性能研究中的应用进展.  , 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [3] 俞奕飞, 曹毅. 从蘸笔纳米刻印术到力化学打印.  , 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [4] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响.  , 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [5] 陈泽, 马建兵, 黄星榞, 贾棋, 徐春华, 张慧东, 陆颖. 单分子技术研究T7解旋酶的解旋与换链.  , 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
    [6] 滕翠娟, 陆越, 马建兵, 李明, 陆颖, 徐春华. 用单分子技术研究Sso7d与DNA的相互作用.  , 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [7] 赵振业, 徐春华, 李菁华, 黄星榞, 马建兵, 陆颖. 用全内反射瞬逝场照明磁镊研究Bloom解旋G-四联体.  , 2017, 66(18): 188701. doi: 10.7498/aps.66.188701
    [8] 周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 弹性蛋白力学特性的单分子力谱.  , 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [9] 钱辉, 陈虎, 严洁. 软物质实验方法前沿:单分子操控技术.  , 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [10] 张宇微, 颜燕, 农大官, 徐春华, 李明. 磁镊结合DNA发夹的方法在RecA蛋白介导的同源重组机制研究中的潜在应用.  , 2016, 65(21): 218702. doi: 10.7498/aps.65.218702
    [11] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜.  , 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [12] 王爽, 郑海子, 赵振业, 陆越, 徐春华. 全内反射瞬逝场照明高精度磁镊及其在DNA解旋酶研究中的应用.  , 2013, 62(16): 168703. doi: 10.7498/aps.62.168703
    [13] 冉诗勇. 谐振势阱中的布朗运动——磁镊实验与模拟.  , 2012, 61(17): 170503. doi: 10.7498/aps.61.170503
    [14] 季超, 张凌云, 窦硕星, 王鹏业. 原子力显微镜观测生物大分子图像的一种处理方法.  , 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [15] 张兴华, 肖彬, 侯锡苗, 徐春华, 王鹏业, 李明. 用单分子磁镊研究顺铂导致的DNA凝聚.  , 2009, 58(6): 4301-4306. doi: 10.7498/aps.58.4301
    [16] 樊康旗, 贾建援, 朱应敏, 刘小院. 原子力显微镜在轻敲模式下的动力学模型.  , 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [17] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究.  , 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [18] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析.  , 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [19] 张向军, 孟永钢, 温诗铸. 原子力显微镜探针耦合变形下的微观扫描力研究.  , 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [20] 孙润广, 齐浩, 张静. 脂质体结构特性的原子力显微镜研究.  , 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
计量
  • 文章访问数:  7090
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-23
  • 修回日期:  2016-04-03
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map