Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical studies of electronic, mechanical and thermal properties of Ti3(SnxAl1-x)C2 solid solutions

Wang Xue-Fei Ma Jing-Jie Jiao Zhao-Yong Zhang Xian-Zhou

Citation:

Theoretical studies of electronic, mechanical and thermal properties of Ti3(SnxAl1-x)C2 solid solutions

Wang Xue-Fei, Ma Jing-Jie, Jiao Zhao-Yong, Zhang Xian-Zhou
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Available experimental and theoretical studies demonstrate that Ti3AlC2 and Ti3SnC2 compounds exhibit excellent mechanical properties at high temperatures,and thus are rendered a promising candidate of high-temperature structural materials.However,these compounds each have a relatively low hardness,Young's modulus,and poor oxidation resistance compared with other MAX phases.In order to overcome these limits,solid solutions on the M,A and/or X sites of the MAX phase compound are considered as a promising strategy to further improve the mechanical properties. Very recently,the solid solutions of Ti3(SnxAl1-x) C2 have been synthesized.However,no theoretical work has focused on the Ti3(SnxAl1-x) C2 solid solutions so far.Therefore,in this work,we perform first-principles calculation to study the microstructures,phase stabilities,electronic,mechanical and thermal properties of Ti3(SnxAl1-x) C2 solid solutions. Particularly,the effects of Sn concentration (x) on the properties are discussed for the Ti3(SnxAl1-x) C2 solid solutions by varying x from 0 to 1.0 in steps of 0.25.All the present ab initio calculations are carried out based on density-functional theory method as implemented in the Cambridge Serial Total Energy Package (CASTEP) code.The electron-ion interaction is described by Vanderbilt-type ultrasoft pseudo-potential with an exchange-correlation function in the generalized gradient approximation (GGA-PW91).The equilibrium crystal structure is fully optimized by independently modifying lattice parameters and internal atomic coordinates,and we employ the Broyden-Fletcher-Goldfarb-Shanno minimization scheme to minimize the total energy and inter-atomic forces.For the reciprocal-space integration,a Monkhorst-Pack grid of 16164 is used to sample the Brillouin-zones for Ti3AlC2 and Ti3SnC2 compound,and 882 for 221 supercell Ti3(SnxAl1-x) C2(x=0.25-0.75) compounds.The present calculated results of the enthalpy formation energy and mechanical stability criteria indicate that all the Ti3(SnxAl1-x) C2(x=0-1.0) solid solutions are thermodynamic and elastically stable.Moreover,mechanical properties (including bulk modulus B and shear modulus G),the ductile and brittle behavior and the anisotropic factors of Ti3(SnxAl1-x) C2 solid solutions are investigated,and the results indicate that all these compounds are identified as brittle materials and isotropic in nature.On the other hand,the MAX phases are good thermal materials due to their high thermal conductivities varying from 12 to 60 W/(mK) at room temperature.As for the thermal conductivity,it has become one of the most fundamental and important physical properties of the MAX phase material,especially for applications at elevated temperatures.Therefore,the lattice thermal conductivities,the minimum thermal conductivities and temperature dependences of the lattice thermal conductivity of Ti3(SnxAl1-x) C2 solid solutions are studied.Furthermore,Debye temperatures and melting points of the Ti3(SnxAl1-x) C2 compounds are also reported.Present results predict that each of all Ti3(SnxAl1-x) C2 compounds has a relative high Debye temperature and melting point,indicating that each of all Ti3(SnxAl1-x) C2 compounds possesses a rather stiff lattice and good thermal conductivity.
      Corresponding author: Jiao Zhao-Yong, zhy_jiao@htu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11347004) and the Basic Research Program of Education Bureau of Henan Province, China (Grant No. 14B140007).
    [1]

    Nowotny V H 1971 J. Solid State Chem. 5 27

    [2]

    Jeitschko W, Nowotny H, Benesovsky F 1963 Monatsh. Chem. 94 672

    [3]

    Barsoum M W, Radovic M 2011 Annu. Rev. Mater. Res. 41 195

    [4]

    Chen J J, Duan J Z, Zhang X Z, Jiang X, Duan W S 2015 Acta Phys. Sin. 64 238101 (in Chinese)[陈俊俊, 段济正, 张学智, 姜欣, 段文山2015 64 238101]

    [5]

    Yan X Z, Kuang X Y, Mao A J, Kuang F G, Wang Z H, Sheng X W 2013 Acta Phys. Sin. 62 107402 (in Chinese)[颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟2013 62 107402]

    [6]

    Jiao Z Y, Wang T X, Ma S H 2016 J. Alloys Compd. 687 47

    [7]

    Lapauw T, Vanmeensel K, Lambrinou K, Vleugels J 2015 J. Alloys Compd. 631 72

    [8]

    Barsoum M W 2013 MAX Phases:Properties of Machinable Ternary Carbides and Nitrides (Weinheim:John Wiley & Sons) pp15-32

    [9]

    Dhakal C, Aryal S, Sakidja R, Ching W Y 2015 J. Eur. Ceram. Soc. 35 3203

    [10]

    Slack G A 1979 Solid State Phys. 34 1

    [11]

    Liu Q, Cheng X L, Li D H, Wang F 2010 Mater. Rev.:Res. 24 70 (in Chinese)[刘强, 程新路, 李德华, 王峰2010材料导报24 70]

    [12]

    Jiao Z Y, Ma S H, Wang T X 2015 Solid State Sci. 39 97

    [13]

    Pietzka M A, Schuster J C 1994 J. Phase Equilib. 15 392

    [14]

    Tzenow N V, Barsoum M W 2000 J. Am. Ceram. Soc. 83 825

    [15]

    Bai Y L, He X D, Sun Y, Zhu C C, Li M W, Shi L P 2010 Solid State Sci. 12 1220

    [16]

    Dubois S, Cabioc'h T, Chartier P, Gauthier V, Jaouen M 2007 J. Am. Ceram. Soc. 90 2642

    [17]

    Zhou Y C, Chen J X, Wang J Y 2006 Acta Mater. 54 1317

    [18]

    Huang Z Y, Xu H, Zhai H X, Wang Y Z, Zhou Y 2015 Ceram. Int. l 41 3701

    [19]

    Zhang H Z, Wang S Q 2007 Acta Mater. 55 4645

    [20]

    Dubois S, Bei G P, Tromas C, Gauthier-Brunet V, Gadaud P 2010 Int. J. Appl. Ceram. Technol. 7 719

    [21]

    Jiao Z Y, Ma S H, Huang X F 2014 J. Alloys Compd. 583 607

    [22]

    Wang J Y, Zhou Y C 2004 Phys. Rev. B 69 214111

    [23]

    Cover M F, Warschkow O, Bilek M M M, Mckenzie D R 2008 Adv. Eng. Mater. 10 935

    [24]

    Pugh S F 1954 Philos. Mag. 45 823

    [25]

    Pettifor D G 1992 J. Mater. Sci. Technol. 8 345

    [26]

    Finkel P, Barsoum M W, El-Raghy T 2000 J. Appl. Phys. 87 1701

    [27]

    Kanoun M B, Jaouen M 2008 J. Phys. Condens. Matter 20 2905

    [28]

    Kanoun M B, Goumri-Said S, Reshak A H, Merad A E 2010 Solid State Sci. 12 887

    [29]

    Chong X Y, Jiang Y H, Zhou R, Feng J 2014 J. Alloys Compd. 610 684

    [30]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909

    [31]

    Poirier J P 2000 Introduction to the Physics of the Earth's Interior (Cambridge:Cambridge University Press) p264

    [32]

    Morelli D T, Slack G A 2006 High Thermal Conductivity Materials (New York:Springer) p45

    [33]

    Belomestnykh V N, Tesleva E P 2004 Tech. Phys. 49 1098

    [34]

    Julian C L 1965 Phys. Rev. A 37 128

    [35]

    Du A B, Wan C L, Qu Z X, Pan W 2009 J. Am. Ceram. Soc. 92 2687

    [36]

    Fine M E, Brown L D, Marcus H L 1984 Scr. Metall. 18 951

    [37]

    Scabarozi T, Ganguly A, Hettinger J D, Lofland S E, Amini S, Finkel P, El-Raghy T, Barsoum M W 2008 J. Appl. Phys. 104 073713

  • [1]

    Nowotny V H 1971 J. Solid State Chem. 5 27

    [2]

    Jeitschko W, Nowotny H, Benesovsky F 1963 Monatsh. Chem. 94 672

    [3]

    Barsoum M W, Radovic M 2011 Annu. Rev. Mater. Res. 41 195

    [4]

    Chen J J, Duan J Z, Zhang X Z, Jiang X, Duan W S 2015 Acta Phys. Sin. 64 238101 (in Chinese)[陈俊俊, 段济正, 张学智, 姜欣, 段文山2015 64 238101]

    [5]

    Yan X Z, Kuang X Y, Mao A J, Kuang F G, Wang Z H, Sheng X W 2013 Acta Phys. Sin. 62 107402 (in Chinese)[颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟2013 62 107402]

    [6]

    Jiao Z Y, Wang T X, Ma S H 2016 J. Alloys Compd. 687 47

    [7]

    Lapauw T, Vanmeensel K, Lambrinou K, Vleugels J 2015 J. Alloys Compd. 631 72

    [8]

    Barsoum M W 2013 MAX Phases:Properties of Machinable Ternary Carbides and Nitrides (Weinheim:John Wiley & Sons) pp15-32

    [9]

    Dhakal C, Aryal S, Sakidja R, Ching W Y 2015 J. Eur. Ceram. Soc. 35 3203

    [10]

    Slack G A 1979 Solid State Phys. 34 1

    [11]

    Liu Q, Cheng X L, Li D H, Wang F 2010 Mater. Rev.:Res. 24 70 (in Chinese)[刘强, 程新路, 李德华, 王峰2010材料导报24 70]

    [12]

    Jiao Z Y, Ma S H, Wang T X 2015 Solid State Sci. 39 97

    [13]

    Pietzka M A, Schuster J C 1994 J. Phase Equilib. 15 392

    [14]

    Tzenow N V, Barsoum M W 2000 J. Am. Ceram. Soc. 83 825

    [15]

    Bai Y L, He X D, Sun Y, Zhu C C, Li M W, Shi L P 2010 Solid State Sci. 12 1220

    [16]

    Dubois S, Cabioc'h T, Chartier P, Gauthier V, Jaouen M 2007 J. Am. Ceram. Soc. 90 2642

    [17]

    Zhou Y C, Chen J X, Wang J Y 2006 Acta Mater. 54 1317

    [18]

    Huang Z Y, Xu H, Zhai H X, Wang Y Z, Zhou Y 2015 Ceram. Int. l 41 3701

    [19]

    Zhang H Z, Wang S Q 2007 Acta Mater. 55 4645

    [20]

    Dubois S, Bei G P, Tromas C, Gauthier-Brunet V, Gadaud P 2010 Int. J. Appl. Ceram. Technol. 7 719

    [21]

    Jiao Z Y, Ma S H, Huang X F 2014 J. Alloys Compd. 583 607

    [22]

    Wang J Y, Zhou Y C 2004 Phys. Rev. B 69 214111

    [23]

    Cover M F, Warschkow O, Bilek M M M, Mckenzie D R 2008 Adv. Eng. Mater. 10 935

    [24]

    Pugh S F 1954 Philos. Mag. 45 823

    [25]

    Pettifor D G 1992 J. Mater. Sci. Technol. 8 345

    [26]

    Finkel P, Barsoum M W, El-Raghy T 2000 J. Appl. Phys. 87 1701

    [27]

    Kanoun M B, Jaouen M 2008 J. Phys. Condens. Matter 20 2905

    [28]

    Kanoun M B, Goumri-Said S, Reshak A H, Merad A E 2010 Solid State Sci. 12 887

    [29]

    Chong X Y, Jiang Y H, Zhou R, Feng J 2014 J. Alloys Compd. 610 684

    [30]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909

    [31]

    Poirier J P 2000 Introduction to the Physics of the Earth's Interior (Cambridge:Cambridge University Press) p264

    [32]

    Morelli D T, Slack G A 2006 High Thermal Conductivity Materials (New York:Springer) p45

    [33]

    Belomestnykh V N, Tesleva E P 2004 Tech. Phys. 49 1098

    [34]

    Julian C L 1965 Phys. Rev. A 37 128

    [35]

    Du A B, Wan C L, Qu Z X, Pan W 2009 J. Am. Ceram. Soc. 92 2687

    [36]

    Fine M E, Brown L D, Marcus H L 1984 Scr. Metall. 18 951

    [37]

    Scabarozi T, Ganguly A, Hettinger J D, Lofland S E, Amini S, Finkel P, El-Raghy T, Barsoum M W 2008 J. Appl. Phys. 104 073713

  • [1] Chen Guang-Ping, Yang Jin-Ni, Qiao Chang-Bing, Huang Lu-Jun, Yu Jing. First-principles calculations of local structure and electronic properties of Er3+-doped TiO2. Acta Physica Sinica, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [2] Zhang Shuo-Xin, Liu Shi-Yu, Yan Da-Li, Yu Qian, Ren Hai-Tao, Yu Bin, Li De-Jun. First-principles study of structural stability and mechanical properties of Ta1–xHfxC and Ta1–xZrxC solid solutions. Acta Physica Sinica, 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [3] Li Jun, Liu Li-Sheng, Xu Shuang, Zhang Jin-Yong. Mechanical, electronic properties and deformation mechanisms of Ti3B4 under uniaxial compressions: a first-principles calculation. Acta Physica Sinica, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [4] Hu Xue-Lan, Lu Rui-Zhi, Wang Zhi-Long, Wang Ya-Ru. First-principles study on effect of Re on micro structure and mechanical properties of Ni3Al intermetallics. Acta Physica Sinica, 2020, 69(10): 107101. doi: 10.7498/aps.69.20200097
    [5] Luo Ming-Hai, Li Ming-Kai, Zhu Jia-Kun, Huang Zhong-Bing, Yang Hui, He Yun-Bin. First-principles study on thermodynamic properties of CdxZn1-xO alloys. Acta Physica Sinica, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [6] Hao Juan, Zhou Guang-Gang, Ma Yue, Huang Wen-Qi, Zhang Peng, Lu Gui-Wu. Theoretical study on thermal and acoustic surface wave properties of Ga3PO7 crystal at high temperature. Acta Physica Sinica, 2016, 65(11): 113101. doi: 10.7498/aps.65.113101
    [7] Peng Qiong, He Chao-Yu, Li Jin, Zhong Jian-Xin. First-principles study of electronic properties of MoSi2 thin films. Acta Physica Sinica, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [8] Zeng Xiao-Bo, Zhu Xiao-Ling, Li De-Hua, Chen Zhong-Jun, Ai Ying-Wei. First-principles calculations of the mechanical properties of IrB and IrB2. Acta Physica Sinica, 2014, 63(15): 153101. doi: 10.7498/aps.63.153101
    [9] Jiao Zhao-Yong, Guo Yong-Liang, Niu Yi-Jun, Zhang Xian-Zhou. The first principle study of electronic and optical properties of defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg). Acta Physica Sinica, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [10] Wu Ye-Qing, Su Liang-Bi, Xu Jun, Chen Hong-Bing, Li Hong-Jun, Zheng Li-He, Wang Qing-Guo. Spectroscopic and thermal properties of Yb doped CaF2-SrF2 laser crystal. Acta Physica Sinica, 2012, 61(17): 177801. doi: 10.7498/aps.61.177801
    [11] Li De-Hua, Su Wen-Jin, Zhu Xiao-Ling. First-principles calculations for the mechanical properties of BC5. Acta Physica Sinica, 2012, 61(2): 023103. doi: 10.7498/aps.61.023103
    [12] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [13] Li Qing-Kun, Sun Yi, Zhou Yu, Zeng Fan-Lin. First principles study of the uniaxial compressive strength of bct-C4 carbon allotrope. Acta Physica Sinica, 2012, 61(9): 093104. doi: 10.7498/aps.61.093104
    [14] Li Qing-Kun, Sun Yi, Zhou Yu, Zeng Fan-Lin. First principles study on the structure and mechanical properties of hcp-C3 carbon bulk ring. Acta Physica Sinica, 2012, 61(4): 043103. doi: 10.7498/aps.61.043103
    [15] Li Xue-Mei, Han Hui-Lei, He Guang-Pu. Lattice dynamical, dielectric and thermodynamic properties of LiNH2 from first principles. Acta Physica Sinica, 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [16] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [17] Zhang Xue-Jun, Gao Pan, Liu Qing-Ju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [18] Ding Hang-Chen, Shi Si-Qi, Jiang Ping, Tang Wei-Hua. First-principles investigation on the phase transitions of BiFeO3. Acta Physica Sinica, 2010, 59(12): 8789-8793. doi: 10.7498/aps.59.8789
    [19] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [20] Li De-Hua, Zhu Xiao-Ling, Su Wen-Jin, Cheng Xin-Lu. First-principles calculations for the structure and mechanical properties of PtN2. Acta Physica Sinica, 2010, 59(3): 2004-2009. doi: 10.7498/aps.59.2004
Metrics
  • Abstract views:  6640
  • PDF Downloads:  248
  • Cited By: 0
Publishing process
  • Received Date:  27 June 2016
  • Accepted Date:  25 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回
Baidu
map