-
高温压电晶体是许多机电器件必需的一种多功能材料, Ga3PO7晶体的居里温度高达1364 ℃, 可应用于高温极限条件. 但是预测高温极限条件下晶体的结构以及物理性质的问题采用实验研究的手段非常困难, 而理论上的预测未见研究. 本文采用密度泛函-准谐振近似理论计算了温度在0-1200 ℃范围内Ga3PO7 晶体的结构常数和热学性质, 结果表明Ga3PO7晶体的晶格常数a和c随温度的升高呈线性增大, 且c方向受温度影响更为显著; 晶体的密度随温度的升高而减小, 计算的a 和c方向平均热膨胀系数分别为1.6710-6 K-1和3.5810-6 K-1, 高温区定压热容为2.067 J/gK, 与实验值一致. 计算了从常温到高温下该晶体的弹性常数以及体弹性模量的变化, 研究了高温条件下的声表面波特性, 发现随着温度的升高, 声表面波速度浮动较小, 而机电耦合系数略有增大; 在传播角为151 时该晶体具有较好的温度稳定性且机电耦合系数达到最大值, 这表明Ga3PO7 晶体是一种有望应用于高温环境下的压电晶体.
-
关键词:
- Ga3PO7晶体 /
- 密度泛函-准谐振近似理论 /
- 热学性质 /
- 声表面波
The high-temperature piezoelectric crystal Ga3PO7is a versatile functional material widely used in many electromechanical devices. As the Curie temperature of this crystal is as high as 1346 ℃, it can break through the current temperature limitations(1200 ℃) and then be used in extremely high-temperature condition. However, it is very difficult to explore its properties in such a high-temperature environment. Moreover, the relevant theoretical research has not been reported to date. Aiming at this problem, the density function theory combined with quasi harmonic approximation theory is used to investigate the structural, thermal and surface acoustic wave (SAW) properties of Ga3PO7. Firstly, the Gibbs energies of Ga3PO7 crystal with different stains are calculated, and the equilibrium structures of Ga3PO7 crystal at different temperatures (from 0 ℃ to 1200 ℃) are found according to minimal energy principle. Secondly, based on the result above, we optimize Ga3PO7 crystal at different temperatures, and then, the thermal and elastic properties of Ga3PO7 crystal within 0-1200 ℃ are calculated using CASTEP package based on the density functional theory in the generalized gradient approximation. The results show that its lattice constants increase almost linearly as temperature increases while its density decreases. Owing to anisotropy, its lattice constant along the c axis increases much more greatly than along the a axis. The coefficients of thermal expansion along the a and c axis are evaluated to be 1.6710-6 K-1 and 3.5810-6 K-1, respectively, and the volumetric heat capacity is evaluated to be 2.067 J/gK. These values all agree well with the experimental values. Finally, the elastic constants, bulk modulus and SAW properties of Ga3PO7 crystal at different temperatures (from 0 ℃ to 1200 ℃) are calculated. The results show that the bulk modulus can reach 175 GPa, and it changes very little as temperature increases. The fluctuation of elastic constants has slight influences on SAW velocity and the electric-mechanical coupling factor. When the propagation angle is 151, it possesses the stablest SAW properties and the largest electric-mechanical coupling factor which can reach 0.7%. The comprehensive analyses of the thermal, mechanical and SAW properties show that Y-cut Ga3PO7 possesses a greater potential application in high temperature environment.-
Keywords:
- Ga3PO7 crystal /
- density functional theory combined with quasi harmonic approximation /
- thermal properties /
- acoustic surface wave
[1] Rong L M, Yang M H, Cai G R, Ji H, Li W, Yang Y 2006 Integr. Ferroelectr. 80 289
[2] Zhang Q, Qu M, Sheng J G 2005 Piezoelectr. Acoustoopt. 27 21 (in Chinese) [张强, 瞿敏, 沈建国 2005 压电与声光 27 21]
[3] Lu Q, Luo L H, Huang Z Z, Cheng L, Song F S 2008 China Ceramics. 44 49 (in Chinese) [卢泉, 罗凌虹, 黄祖志, 程亮, 宋福生 2008 中国陶瓷 44 49]
[4] Hang W, Zhou L B, Shimizu J, Yamamoto T, Yuan J L 2012 Eng. Mater. 523 7
[5] Hall D A 2001 J. Mater. Sci. 36 4575
[6] Wu W, Greve D W, Oppenheim I J 2008 Proceedings of IEEE International Ultrasonics Symposium Beijing, China, Nov. 2-5, 2008 p1018
[7] Hempel J, Zukowski E, Berndt M, Reindl L M, Wilde J 2012 Proceedings of 4th Electronic System-Integration Technology Conference (Estc) Amsterdam, America, Sept. 17-22, 2012 p4644
[8] Zhang S, Wu F Q, Wu W D 2008 Acta Phys. Sin. 57 5020 (in Chinese) [张姗, 吴福全, 吴闻迪 2008 57 5020]
[9] Zhu H B, Wu Z B, Liu G Q, Xi K, Li S S, Dong Y Y 2013 Acta Phys. Sin. 62 014205 (in Chinese) [朱华兵, 吴正斌, 刘国强, 席奎, 李闪闪, 董洋洋 2013 62 014205]
[10] Pastureaud T, Solal M, Biasse B, Aspar B, Briot J B, Daniau W, Steichen W, Lardat R, Laude V, Laens A, Friedt J M, Ballandras S 2007 IEEE Trans. Ultrason. Ferr. 54 870
[11] Liu T, Yu K X, Wang P 2010 P. Soc. Photo-Opt. Ins. 7658 78
[12] Reinhardt A, Benaissa L, David J B, Lamard N, Kovacova V, Boudou N, Defas E 2014 Proceedings of 2014 IEEE International Ultrasonics Symposium (Ius) Chicago, America, Sept. 3-6, 2014 p773
[13] Strossner U, Peters A, Mlynek J, Schiller S, Meyn J P, Wallenstein R 1999 Opt. Lett. 24 1602
[14] Sheem S K, Burns W K, Milton A F 1978 Opt. Lett. 3 76
[15] Tan Y Q 2014 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [谭永强 2014 博士学位论文(济南: 山东大学)]
[16] He X K, Zeng L B, Wu Q S, Zhang L Y, Zhu K, Liu Y L 2012 Chin. Phys. B 21 067081-1
[17] Schiopu P, Chilibon I, Grosu N, Craciun A 2015 Proceedings of The 7th International Conference on Advanced Topics in Optoelectronics, Microelectronics and Nanotechnologies Constanta, Romania, Aug. 21-24, 2014 p49
[18] Lukyanov D, Shevchenko S, Kukaev A, Filippova E, Khivrich M 2015 Procedings of 2014 International Conference on Mechanical Engineering, Automation and Control Systems (Meacs) Tomsk, Russia, Oct. 16-18, 2014 p389
[19] Boudin S, Lii K H 1998 Acta Crystallogr. C 54 5
[20] Xu G, Li J, Guo Y, Han S, Wang J 2010 Cryst. Res. Technol. 45 600
[21] Yamanouchi K, Kotani K, Odagawa H, Cho Y S 2000 Jpn. J. Appl. Phys. 39 3032
[22] Xu G G 2009 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [徐国纲 2009 博士学位论文(济南: 山东大学)]
[23] Guo Y J 2009 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [郭永解 2013 博士学位论文(济南: 山东大学)]
[24] Ren J, Ma Z, He C, Sa R, Li Q, Wu K 2015 Comp. Mater. Sci. 106 1
[25] Gao Y N, Sun W, Huang W Q, Wu C, Lu G W 2013 J. Synthetic Crystals 9 1767 (in Chinese) [高亚南, 孙为, 黄文奇, 吴冲, 卢贵武 2013 人工晶体学报 9 1767]
[26] Wen B, Shao T J, Melnik R, Kawazoe Y, Tian Y J 2013 J. Appl. Phys. 113 103501
[27] Zhang W, Chen Q Y, Zeng Z Y, Cai L C 2015 Chin. Phys. B 24 107101
[28] Li Z L, Cheng X L 2014 Chin. Phys. B 23 046201
[29] Sang D D, Wang Q L, Hang C, Chen K, Pan Y W 2015 Chin. Phys. B 24 077104
[30] Peng J H, Zeng Q F, Xie C W, Zhu K J, Tan J H 2015 Acta Phys. Sin. 64 236102 (in Chinese) [彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华 2015 64 236102]
[31] Shao T J, Wen B, Melnik R, Yao S, Kawazoe Y, Tian Y J 2012 J. Appl. Phys. 111 083525
[32] Wang J F, Chen W Z, Jiang Z Y, Zhang X D, Si L 2012 Chin. Phys. B 21 077102
[33] Li Q, Huang D H, Cao Q L, Wang F H, Cai L C, Zhang X L, Jing G Q 2012 Chin. Phys. B 21 127102
[34] Zhai D, Wei Z, Feng Z F, Shao X H, Zhang P 2014 Acta Phys. Sin. 20 206501
[35] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys-Condens. Mat. 14 2717
[36] Huang W Q, Yang H 2010 Proceedings of the 7th National Conference on Chinese Functional Materials and Applications Changsha, China, October 15-18, 2010 p1085
[37] Zhou G G, Lu G W, Wu C, Huang W Q, Yang H 2012 Mater. Sci. Tecno. 560 66
[38] Qiu B B, Lu G W, Jiao Y Q, Wu C, Zhou G G, Feng C, Hung W Q, Yang H 2011 J. Alloy. Compd. 509 5789
[39] Guo Y J, Li J, Wang J Y, Han S J, Wang Y Z 2011 J. Chin. Ceram. Soc. 39 1339 (in Chinese) [郭永解, 李静, 王继扬, 韩树娟, 王永政 2011 硅酸盐学报 39 1339]
[40] Ganeshan S 2011 Ph. D. Dissertation (Pennsylvania State: The Pennsylvania State University)
[41] Labguerie P, Harb M, Baraille I, Rrat M 2010 Phys. Rev. B 81 1718
[42] Mohammadou M, Yves N, Bartolomeo C, Ross B, Roberto D 2005 J. Phys-Condens. Mat. 17 535
[43] Labguerie P, Pascale F, Mrawa M, Zicovich-Wilson C, Makhouki N, Dovesi R 2005 Phys. Condens. Mat. 43 453
-
[1] Rong L M, Yang M H, Cai G R, Ji H, Li W, Yang Y 2006 Integr. Ferroelectr. 80 289
[2] Zhang Q, Qu M, Sheng J G 2005 Piezoelectr. Acoustoopt. 27 21 (in Chinese) [张强, 瞿敏, 沈建国 2005 压电与声光 27 21]
[3] Lu Q, Luo L H, Huang Z Z, Cheng L, Song F S 2008 China Ceramics. 44 49 (in Chinese) [卢泉, 罗凌虹, 黄祖志, 程亮, 宋福生 2008 中国陶瓷 44 49]
[4] Hang W, Zhou L B, Shimizu J, Yamamoto T, Yuan J L 2012 Eng. Mater. 523 7
[5] Hall D A 2001 J. Mater. Sci. 36 4575
[6] Wu W, Greve D W, Oppenheim I J 2008 Proceedings of IEEE International Ultrasonics Symposium Beijing, China, Nov. 2-5, 2008 p1018
[7] Hempel J, Zukowski E, Berndt M, Reindl L M, Wilde J 2012 Proceedings of 4th Electronic System-Integration Technology Conference (Estc) Amsterdam, America, Sept. 17-22, 2012 p4644
[8] Zhang S, Wu F Q, Wu W D 2008 Acta Phys. Sin. 57 5020 (in Chinese) [张姗, 吴福全, 吴闻迪 2008 57 5020]
[9] Zhu H B, Wu Z B, Liu G Q, Xi K, Li S S, Dong Y Y 2013 Acta Phys. Sin. 62 014205 (in Chinese) [朱华兵, 吴正斌, 刘国强, 席奎, 李闪闪, 董洋洋 2013 62 014205]
[10] Pastureaud T, Solal M, Biasse B, Aspar B, Briot J B, Daniau W, Steichen W, Lardat R, Laude V, Laens A, Friedt J M, Ballandras S 2007 IEEE Trans. Ultrason. Ferr. 54 870
[11] Liu T, Yu K X, Wang P 2010 P. Soc. Photo-Opt. Ins. 7658 78
[12] Reinhardt A, Benaissa L, David J B, Lamard N, Kovacova V, Boudou N, Defas E 2014 Proceedings of 2014 IEEE International Ultrasonics Symposium (Ius) Chicago, America, Sept. 3-6, 2014 p773
[13] Strossner U, Peters A, Mlynek J, Schiller S, Meyn J P, Wallenstein R 1999 Opt. Lett. 24 1602
[14] Sheem S K, Burns W K, Milton A F 1978 Opt. Lett. 3 76
[15] Tan Y Q 2014 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [谭永强 2014 博士学位论文(济南: 山东大学)]
[16] He X K, Zeng L B, Wu Q S, Zhang L Y, Zhu K, Liu Y L 2012 Chin. Phys. B 21 067081-1
[17] Schiopu P, Chilibon I, Grosu N, Craciun A 2015 Proceedings of The 7th International Conference on Advanced Topics in Optoelectronics, Microelectronics and Nanotechnologies Constanta, Romania, Aug. 21-24, 2014 p49
[18] Lukyanov D, Shevchenko S, Kukaev A, Filippova E, Khivrich M 2015 Procedings of 2014 International Conference on Mechanical Engineering, Automation and Control Systems (Meacs) Tomsk, Russia, Oct. 16-18, 2014 p389
[19] Boudin S, Lii K H 1998 Acta Crystallogr. C 54 5
[20] Xu G, Li J, Guo Y, Han S, Wang J 2010 Cryst. Res. Technol. 45 600
[21] Yamanouchi K, Kotani K, Odagawa H, Cho Y S 2000 Jpn. J. Appl. Phys. 39 3032
[22] Xu G G 2009 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [徐国纲 2009 博士学位论文(济南: 山东大学)]
[23] Guo Y J 2009 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [郭永解 2013 博士学位论文(济南: 山东大学)]
[24] Ren J, Ma Z, He C, Sa R, Li Q, Wu K 2015 Comp. Mater. Sci. 106 1
[25] Gao Y N, Sun W, Huang W Q, Wu C, Lu G W 2013 J. Synthetic Crystals 9 1767 (in Chinese) [高亚南, 孙为, 黄文奇, 吴冲, 卢贵武 2013 人工晶体学报 9 1767]
[26] Wen B, Shao T J, Melnik R, Kawazoe Y, Tian Y J 2013 J. Appl. Phys. 113 103501
[27] Zhang W, Chen Q Y, Zeng Z Y, Cai L C 2015 Chin. Phys. B 24 107101
[28] Li Z L, Cheng X L 2014 Chin. Phys. B 23 046201
[29] Sang D D, Wang Q L, Hang C, Chen K, Pan Y W 2015 Chin. Phys. B 24 077104
[30] Peng J H, Zeng Q F, Xie C W, Zhu K J, Tan J H 2015 Acta Phys. Sin. 64 236102 (in Chinese) [彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华 2015 64 236102]
[31] Shao T J, Wen B, Melnik R, Yao S, Kawazoe Y, Tian Y J 2012 J. Appl. Phys. 111 083525
[32] Wang J F, Chen W Z, Jiang Z Y, Zhang X D, Si L 2012 Chin. Phys. B 21 077102
[33] Li Q, Huang D H, Cao Q L, Wang F H, Cai L C, Zhang X L, Jing G Q 2012 Chin. Phys. B 21 127102
[34] Zhai D, Wei Z, Feng Z F, Shao X H, Zhang P 2014 Acta Phys. Sin. 20 206501
[35] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys-Condens. Mat. 14 2717
[36] Huang W Q, Yang H 2010 Proceedings of the 7th National Conference on Chinese Functional Materials and Applications Changsha, China, October 15-18, 2010 p1085
[37] Zhou G G, Lu G W, Wu C, Huang W Q, Yang H 2012 Mater. Sci. Tecno. 560 66
[38] Qiu B B, Lu G W, Jiao Y Q, Wu C, Zhou G G, Feng C, Hung W Q, Yang H 2011 J. Alloy. Compd. 509 5789
[39] Guo Y J, Li J, Wang J Y, Han S J, Wang Y Z 2011 J. Chin. Ceram. Soc. 39 1339 (in Chinese) [郭永解, 李静, 王继扬, 韩树娟, 王永政 2011 硅酸盐学报 39 1339]
[40] Ganeshan S 2011 Ph. D. Dissertation (Pennsylvania State: The Pennsylvania State University)
[41] Labguerie P, Harb M, Baraille I, Rrat M 2010 Phys. Rev. B 81 1718
[42] Mohammadou M, Yves N, Bartolomeo C, Ross B, Roberto D 2005 J. Phys-Condens. Mat. 17 535
[43] Labguerie P, Pascale F, Mrawa M, Zicovich-Wilson C, Makhouki N, Dovesi R 2005 Phys. Condens. Mat. 43 453
计量
- 文章访问数: 6137
- PDF下载量: 173
- 被引次数: 0