-
本文采用基于密度泛函理论的平面波超软赝势方法研究了N,Fe共掺杂TiO2的晶体结构、电子结构和光学性质.研究表明,N,Fe共掺杂TiO2的晶格体积、原子间的键长及原子的电荷量发生变化,导致晶体中产生八面体偶极矩,并因此光生电子-空穴对有效分离,提高TiO2的光催化活性;N,Fe共掺杂同时在导带底和价带顶形成了杂质能级,使TiO2的禁带宽度变窄,光吸收带边红移到可见光区,这些杂质能级可以降低光生载流子的复合概率,提高Ti
-
关键词:
- 第一性原理计算 /
- 氮铁共掺杂锐钛矿相TiO2 /
- 电子结构 /
- 光学性质
The crystal structure, electronic structure and optical properties of nitrogen and iron codoped anatase TiO2 were studied by using the plane-wave ultrasoft pesudopotentials method based on density functional theory. The calculated results show that the octahedral dipole moments in nitrogen and iron codoped TiO2 increase due to the changes in lattice parameters, bond length and charge of atoms, which is very effective for the separation of photoexcited electron-hole pairs and the improvement of the photocatalytic activity of TiO2. Some impurity energy levels of codoped TiO2 are below the conduction band minimum, and others are above the valence band maximum. The distance between them is narrowed, which results in the redshift of the optical absorption edges to visible-light region. These impurity energy levels can reduce the recombination rate of photoexcited carriers and improve the photocatalytic efficiency of TiO2. Compared with that of Fe doped TiO2, for the codoped TiO2, the density of states peak of impurity energy levels above the valence band maximum increase apparently, which increases the electronic transition probability from the impurity energy levels to the conduction band, and improves the solar energy utilization. If the impurity level is not taken into account, compared with that of pure TiO2, the CB edge position and the VB edge position of codoped TiO2 is only slightly changed, it means that the strong redox capacity of codoping photocatalysts is still excellent.-
Keywords:
- first-principles calculation /
- anatase TiO2 codoped with nitrogen and iron /
- electronic structure /
- optical properties
[1] Kanisaka H, A dachi T, Yamashita K 2005 J. Chem. Phys. 123 84704
[2] Chen X, Mao S 2007 Chem. Rev. 107 2891
[3] Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243
[4] Yu J X,Fu M,Ji G F, Chen X R 2009 Chin. Phys. B 18 269
[5] Zhu J, Yu J X ,Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216
[6] Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 1862 (in Chinese)[侯清玉、张 跃、张 涛 2008 57 1862]
[7] Lin F, Zheng F W,Ouyang F P 2009 Acta Phys. Sin. 58 193 (in Chinese) [林 峰、郑法伟、欧阳方平 2009 58 193]
[8] Sun H W, Zhang X J, Zhang Z Y, Chen Y S, Crittenden J C 2009 Environ. Pollut. 157 1165
[9] Chen F, Zou W W, Qu W W, Zhang J L 2009 Catal. Commun. 10 1510
[10] Ananpattarachai J, Kajitvichyanukul P, Seraphin S 2009 J. Hazard Mater.168 253
[11] Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W 2009 Appl. Catal. B 191 355
[12] Yu H Z, Peng J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese) [於黄忠、彭俊彪、刘金成 2009 58 669]
[13] Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 3155(in Chinese) [侯清玉、张 跃、张 涛 2008 57 3155]
[14] Liang L Y, Dai S Y, Fang X Q, Hu L H 2008 Acta Phys. Sin. 57 1956 (in Chinese) [梁林云、戴松元、方霞琴、胡林华 2008 57 1956]
[15] Ma X G, Jiang J J, Liang P 2008 Acta Phys. Sin. 57 3120 (in Chinese)[马新国、江建军、梁 培 2008 57 3120]
[16] Choi W , Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669
[17] Wang C, Bahnemmannt D, Dohrmann J 2000 Chem. Commun. 16 1539
[18] Wang C, Li Q, Wang R 2004 J. Mater. Sci. 39 1899
[19] Zhang Z, Wang C, Zakaria R, Ying J 1998 J. Phys. Chem. B 102 10871
[20] Asahi R, Morikawa T, Ohwaki T, Aoki O K, Taga Y 2001 Science 293 269
[21] Luo H, Takata T, Lee Y, Zhao J,Domen K,Yan Y 2004 Chem. Mater. 16 846
[22] Shi J W, Zheng J T, Hu Y, Zhao Y C 2007 Mater. Chem. Phys. 106 247
[23] Liu H Y, Gao L 2004 Chem. Lett. 33 730
[24] Chen Q L, Tang C Q 2009 Acta Phys. Chim. Sin. 25 915 (in Chinese) [陈琦丽、唐超群2009 物理化学学报 25 915]
[25] Xie Y, Li Y Z, Zhao X J 2007 J. Mole Cata. A 277 119
[26] Gu D E, Yang B C, Hu Y D 2008 Cataly. Commun. 9 1472
[27] Huang L H, Sun C, Liu Y L 2007 Appl. Surf. Sci. 253 7029
[28] Pelaez M, Cruz A , Stathato S, Falaras P, Dionysiou D 2009 Catal.Today 144 19
[29] Huang D S, Chen C F, Li Y H, Zeng R J 2007 Chin. J. Inorg. Chem. 23 728 (in Chinese) [黄东升、陈朝凤、李玉花、曾人杰 2007 无机化学学报 23 728]
[30] Yang X X, Cao C D, Erickson L, Hohn K, Maghirang R, Klabunde K 2009 Appl. Cataly. B 91 657
[31] Segall M D, Lindan P J D, Probert M J, Pickard C J,Hasnip P J,Clark S J, Payne M C 2002 J. Phys. Cond .Matt. 14 2717
[32] Keiji W, Masatoshi S, Hideaki T 2001 Electrochemistry 69 407
[33] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566
[34] Perdew J P, Zunger A 1981 Phy. Rev. B 23 5048
[35] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦、柳清菊、朱忠其、张 瑾 2008 57 3760]
[36] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J, Liu Q 2008 J. Funct. Mater. 39 953 (in Chinese)[赵宗彦、柳清菊、朱忠其、张 瑾、刘 强 2008 功能材料 39 953]
[37] Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys . Rev. Lett. 95 256404
[38] Sato J, Kobayashi H, Inoue Y 2003 J. Phys. Chem. B 107 7970
[39] Zhang Y, Tang C Q, Dai J 2005 Acta Phys. Sin. 54 323 (in Chinese) [张 勇、唐超群、戴 君 2005 54 323]
[40] Tang J W, Ye J H 2005 Chem. Phys. Lett. 410 104
[41] Zhao Z Y, Liu Q J 2008 J. Phys. D 41 025105
[42] Xun L, Dai L, Ma X G, Tang C Q, Tang D H 2007 Acta Phys. Sin. 56 1048(in Chinese) [徐 凌、戴 磊、马新国、唐超群、唐代海2007 56 1048]
[43] Peng L P, Xu L, Yin J W 2007 Acta Phys. Sin. 56 1585(in Chinese)[彭丽萍、徐 凌、尹建武 2007 56 1585]
[44] Jellison G E, Boatner L A, Budai J D, Budai J D, Jeong B S , Norton D P 2003 J. Appl. Phys. 93 9537
[45] Zhu J F, Chen F, Zhang J l, Chen H J, Anpo M 2006 J. Photochem. Photobiol. A 180 196
[46] Ghasemi S, Rahimnejad S, Setayesh S R, Rohani S, Gholami M R 2009 J. Hazard Mater. 172 1573
[47] Linsebigler A L, Lu G Q, Yates J T 1995 Chem. Rev. 95 735
[48] Kim Y I, Atherton S J, Brigham E S, Mallouk T E 1993 Phys.Chem. 97 11802
-
[1] Kanisaka H, A dachi T, Yamashita K 2005 J. Chem. Phys. 123 84704
[2] Chen X, Mao S 2007 Chem. Rev. 107 2891
[3] Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243
[4] Yu J X,Fu M,Ji G F, Chen X R 2009 Chin. Phys. B 18 269
[5] Zhu J, Yu J X ,Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216
[6] Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 1862 (in Chinese)[侯清玉、张 跃、张 涛 2008 57 1862]
[7] Lin F, Zheng F W,Ouyang F P 2009 Acta Phys. Sin. 58 193 (in Chinese) [林 峰、郑法伟、欧阳方平 2009 58 193]
[8] Sun H W, Zhang X J, Zhang Z Y, Chen Y S, Crittenden J C 2009 Environ. Pollut. 157 1165
[9] Chen F, Zou W W, Qu W W, Zhang J L 2009 Catal. Commun. 10 1510
[10] Ananpattarachai J, Kajitvichyanukul P, Seraphin S 2009 J. Hazard Mater.168 253
[11] Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W 2009 Appl. Catal. B 191 355
[12] Yu H Z, Peng J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese) [於黄忠、彭俊彪、刘金成 2009 58 669]
[13] Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 3155(in Chinese) [侯清玉、张 跃、张 涛 2008 57 3155]
[14] Liang L Y, Dai S Y, Fang X Q, Hu L H 2008 Acta Phys. Sin. 57 1956 (in Chinese) [梁林云、戴松元、方霞琴、胡林华 2008 57 1956]
[15] Ma X G, Jiang J J, Liang P 2008 Acta Phys. Sin. 57 3120 (in Chinese)[马新国、江建军、梁 培 2008 57 3120]
[16] Choi W , Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669
[17] Wang C, Bahnemmannt D, Dohrmann J 2000 Chem. Commun. 16 1539
[18] Wang C, Li Q, Wang R 2004 J. Mater. Sci. 39 1899
[19] Zhang Z, Wang C, Zakaria R, Ying J 1998 J. Phys. Chem. B 102 10871
[20] Asahi R, Morikawa T, Ohwaki T, Aoki O K, Taga Y 2001 Science 293 269
[21] Luo H, Takata T, Lee Y, Zhao J,Domen K,Yan Y 2004 Chem. Mater. 16 846
[22] Shi J W, Zheng J T, Hu Y, Zhao Y C 2007 Mater. Chem. Phys. 106 247
[23] Liu H Y, Gao L 2004 Chem. Lett. 33 730
[24] Chen Q L, Tang C Q 2009 Acta Phys. Chim. Sin. 25 915 (in Chinese) [陈琦丽、唐超群2009 物理化学学报 25 915]
[25] Xie Y, Li Y Z, Zhao X J 2007 J. Mole Cata. A 277 119
[26] Gu D E, Yang B C, Hu Y D 2008 Cataly. Commun. 9 1472
[27] Huang L H, Sun C, Liu Y L 2007 Appl. Surf. Sci. 253 7029
[28] Pelaez M, Cruz A , Stathato S, Falaras P, Dionysiou D 2009 Catal.Today 144 19
[29] Huang D S, Chen C F, Li Y H, Zeng R J 2007 Chin. J. Inorg. Chem. 23 728 (in Chinese) [黄东升、陈朝凤、李玉花、曾人杰 2007 无机化学学报 23 728]
[30] Yang X X, Cao C D, Erickson L, Hohn K, Maghirang R, Klabunde K 2009 Appl. Cataly. B 91 657
[31] Segall M D, Lindan P J D, Probert M J, Pickard C J,Hasnip P J,Clark S J, Payne M C 2002 J. Phys. Cond .Matt. 14 2717
[32] Keiji W, Masatoshi S, Hideaki T 2001 Electrochemistry 69 407
[33] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566
[34] Perdew J P, Zunger A 1981 Phy. Rev. B 23 5048
[35] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦、柳清菊、朱忠其、张 瑾 2008 57 3760]
[36] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J, Liu Q 2008 J. Funct. Mater. 39 953 (in Chinese)[赵宗彦、柳清菊、朱忠其、张 瑾、刘 强 2008 功能材料 39 953]
[37] Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys . Rev. Lett. 95 256404
[38] Sato J, Kobayashi H, Inoue Y 2003 J. Phys. Chem. B 107 7970
[39] Zhang Y, Tang C Q, Dai J 2005 Acta Phys. Sin. 54 323 (in Chinese) [张 勇、唐超群、戴 君 2005 54 323]
[40] Tang J W, Ye J H 2005 Chem. Phys. Lett. 410 104
[41] Zhao Z Y, Liu Q J 2008 J. Phys. D 41 025105
[42] Xun L, Dai L, Ma X G, Tang C Q, Tang D H 2007 Acta Phys. Sin. 56 1048(in Chinese) [徐 凌、戴 磊、马新国、唐超群、唐代海2007 56 1048]
[43] Peng L P, Xu L, Yin J W 2007 Acta Phys. Sin. 56 1585(in Chinese)[彭丽萍、徐 凌、尹建武 2007 56 1585]
[44] Jellison G E, Boatner L A, Budai J D, Budai J D, Jeong B S , Norton D P 2003 J. Appl. Phys. 93 9537
[45] Zhu J F, Chen F, Zhang J l, Chen H J, Anpo M 2006 J. Photochem. Photobiol. A 180 196
[46] Ghasemi S, Rahimnejad S, Setayesh S R, Rohani S, Gholami M R 2009 J. Hazard Mater. 172 1573
[47] Linsebigler A L, Lu G Q, Yates J T 1995 Chem. Rev. 95 735
[48] Kim Y I, Atherton S J, Brigham E S, Mallouk T E 1993 Phys.Chem. 97 11802
计量
- 文章访问数: 10778
- PDF下载量: 1679
- 被引次数: 0