搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究

张学军 高攀 柳清菊

引用本文:
Citation:

氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究

张学军, 高攀, 柳清菊

First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron

Zhang Xue-Jun, Gao Pan, Liu Qing-Ju
PDF
导出引用
  • 本文采用基于密度泛函理论的平面波超软赝势方法研究了N,Fe共掺杂TiO2的晶体结构、电子结构和光学性质.研究表明,N,Fe共掺杂TiO2的晶格体积、原子间的键长及原子的电荷量发生变化,导致晶体中产生八面体偶极矩,并因此光生电子-空穴对有效分离,提高TiO2的光催化活性;N,Fe共掺杂同时在导带底和价带顶形成了杂质能级,使TiO2的禁带宽度变窄,光吸收带边红移到可见光区,这些杂质能级可以降低光生载流子的复合概率,提高Ti
    The crystal structure, electronic structure and optical properties of nitrogen and iron codoped anatase TiO2 were studied by using the plane-wave ultrasoft pesudopotentials method based on density functional theory. The calculated results show that the octahedral dipole moments in nitrogen and iron codoped TiO2 increase due to the changes in lattice parameters, bond length and charge of atoms, which is very effective for the separation of photoexcited electron-hole pairs and the improvement of the photocatalytic activity of TiO2. Some impurity energy levels of codoped TiO2 are below the conduction band minimum, and others are above the valence band maximum. The distance between them is narrowed, which results in the redshift of the optical absorption edges to visible-light region. These impurity energy levels can reduce the recombination rate of photoexcited carriers and improve the photocatalytic efficiency of TiO2. Compared with that of Fe doped TiO2, for the codoped TiO2, the density of states peak of impurity energy levels above the valence band maximum increase apparently, which increases the electronic transition probability from the impurity energy levels to the conduction band, and improves the solar energy utilization. If the impurity level is not taken into account, compared with that of pure TiO2, the CB edge position and the VB edge position of codoped TiO2 is only slightly changed, it means that the strong redox capacity of codoping photocatalysts is still excellent.
    • 基金项目: 国家自然科学基金(批准号:50862009)资助的课题.
    [1]

    Kanisaka H, A dachi T, Yamashita K 2005 J. Chem. Phys. 123 84704

    [2]

    Chen X, Mao S 2007 Chem. Rev. 107 2891

    [3]

    Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243

    [4]

    Yu J X,Fu M,Ji G F, Chen X R 2009 Chin. Phys. B 18 269

    [5]

    Zhu J, Yu J X ,Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [6]

    Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 1862 (in Chinese)[侯清玉、张 跃、张 涛 2008 57 1862]

    [7]

    Lin F, Zheng F W,Ouyang F P 2009 Acta Phys. Sin. 58 193 (in Chinese) [林 峰、郑法伟、欧阳方平 2009 58 193]

    [8]

    Sun H W, Zhang X J, Zhang Z Y, Chen Y S, Crittenden J C 2009 Environ. Pollut. 157 1165

    [9]

    Chen F, Zou W W, Qu W W, Zhang J L 2009 Catal. Commun. 10 1510

    [10]

    Ananpattarachai J, Kajitvichyanukul P, Seraphin S 2009 J. Hazard Mater.168 253

    [11]

    Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W 2009 Appl. Catal. B 191 355

    [12]

    Yu H Z, Peng J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese) [於黄忠、彭俊彪、刘金成 2009 58 669]

    [13]

    Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 3155(in Chinese) [侯清玉、张 跃、张 涛 2008 57 3155]

    [14]

    Liang L Y, Dai S Y, Fang X Q, Hu L H 2008 Acta Phys. Sin. 57 1956 (in Chinese) [梁林云、戴松元、方霞琴、胡林华 2008 57 1956]

    [15]

    Ma X G, Jiang J J, Liang P 2008 Acta Phys. Sin. 57 3120 (in Chinese)[马新国、江建军、梁 培 2008 57 3120]

    [16]

    Choi W , Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [17]

    Wang C, Bahnemmannt D, Dohrmann J 2000 Chem. Commun. 16 1539

    [18]

    Wang C, Li Q, Wang R 2004 J. Mater. Sci. 39 1899

    [19]

    Zhang Z, Wang C, Zakaria R, Ying J 1998 J. Phys. Chem. B 102 10871

    [20]

    Asahi R, Morikawa T, Ohwaki T, Aoki O K, Taga Y 2001 Science 293 269

    [21]

    Luo H, Takata T, Lee Y, Zhao J,Domen K,Yan Y 2004 Chem. Mater. 16 846

    [22]

    Shi J W, Zheng J T, Hu Y, Zhao Y C 2007 Mater. Chem. Phys. 106 247

    [23]

    Liu H Y, Gao L 2004 Chem. Lett. 33 730

    [24]

    Chen Q L, Tang C Q 2009 Acta Phys. Chim. Sin. 25 915 (in Chinese) [陈琦丽、唐超群2009 物理化学学报 25 915]

    [25]

    Xie Y, Li Y Z, Zhao X J 2007 J. Mole Cata. A 277 119

    [26]

    Gu D E, Yang B C, Hu Y D 2008 Cataly. Commun. 9 1472

    [27]

    Huang L H, Sun C, Liu Y L 2007 Appl. Surf. Sci. 253 7029

    [28]

    Pelaez M, Cruz A , Stathato S, Falaras P, Dionysiou D 2009 Catal.Today 144 19

    [29]

    Huang D S, Chen C F, Li Y H, Zeng R J 2007 Chin. J. Inorg. Chem. 23 728 (in Chinese) [黄东升、陈朝凤、李玉花、曾人杰 2007 无机化学学报 23 728]

    [30]

    Yang X X, Cao C D, Erickson L, Hohn K, Maghirang R, Klabunde K 2009 Appl. Cataly. B 91 657

    [31]

    Segall M D, Lindan P J D, Probert M J, Pickard C J,Hasnip P J,Clark S J, Payne M C 2002 J. Phys. Cond .Matt. 14 2717

    [32]

    Keiji W, Masatoshi S, Hideaki T 2001 Electrochemistry 69 407

    [33]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [34]

    Perdew J P, Zunger A 1981 Phy. Rev. B 23 5048

    [35]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦、柳清菊、朱忠其、张 瑾 2008 57 3760]

    [36]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J, Liu Q 2008 J. Funct. Mater. 39 953 (in Chinese)[赵宗彦、柳清菊、朱忠其、张 瑾、刘 强 2008 功能材料 39 953]

    [37]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys . Rev. Lett. 95 256404

    [38]

    Sato J, Kobayashi H, Inoue Y 2003 J. Phys. Chem. B 107 7970

    [39]

    Zhang Y, Tang C Q, Dai J 2005 Acta Phys. Sin. 54 323 (in Chinese) [张 勇、唐超群、戴 君 2005 54 323]

    [40]

    Tang J W, Ye J H 2005 Chem. Phys. Lett. 410 104

    [41]

    Zhao Z Y, Liu Q J 2008 J. Phys. D 41 025105

    [42]

    Xun L, Dai L, Ma X G, Tang C Q, Tang D H 2007 Acta Phys. Sin. 56 1048(in Chinese) [徐 凌、戴 磊、马新国、唐超群、唐代海2007 56 1048]

    [43]

    Peng L P, Xu L, Yin J W 2007 Acta Phys. Sin. 56 1585(in Chinese)[彭丽萍、徐 凌、尹建武 2007 56 1585]

    [44]

    Jellison G E, Boatner L A, Budai J D, Budai J D, Jeong B S , Norton D P 2003 J. Appl. Phys. 93 9537

    [45]

    Zhu J F, Chen F, Zhang J l, Chen H J, Anpo M 2006 J. Photochem. Photobiol. A 180 196

    [46]

    Ghasemi S, Rahimnejad S, Setayesh S R, Rohani S, Gholami M R 2009 J. Hazard Mater. 172 1573

    [47]

    Linsebigler A L, Lu G Q, Yates J T 1995 Chem. Rev. 95 735

    [48]

    Kim Y I, Atherton S J, Brigham E S, Mallouk T E 1993 Phys.Chem. 97 11802

  • [1]

    Kanisaka H, A dachi T, Yamashita K 2005 J. Chem. Phys. 123 84704

    [2]

    Chen X, Mao S 2007 Chem. Rev. 107 2891

    [3]

    Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243

    [4]

    Yu J X,Fu M,Ji G F, Chen X R 2009 Chin. Phys. B 18 269

    [5]

    Zhu J, Yu J X ,Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [6]

    Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 1862 (in Chinese)[侯清玉、张 跃、张 涛 2008 57 1862]

    [7]

    Lin F, Zheng F W,Ouyang F P 2009 Acta Phys. Sin. 58 193 (in Chinese) [林 峰、郑法伟、欧阳方平 2009 58 193]

    [8]

    Sun H W, Zhang X J, Zhang Z Y, Chen Y S, Crittenden J C 2009 Environ. Pollut. 157 1165

    [9]

    Chen F, Zou W W, Qu W W, Zhang J L 2009 Catal. Commun. 10 1510

    [10]

    Ananpattarachai J, Kajitvichyanukul P, Seraphin S 2009 J. Hazard Mater.168 253

    [11]

    Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W 2009 Appl. Catal. B 191 355

    [12]

    Yu H Z, Peng J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese) [於黄忠、彭俊彪、刘金成 2009 58 669]

    [13]

    Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 3155(in Chinese) [侯清玉、张 跃、张 涛 2008 57 3155]

    [14]

    Liang L Y, Dai S Y, Fang X Q, Hu L H 2008 Acta Phys. Sin. 57 1956 (in Chinese) [梁林云、戴松元、方霞琴、胡林华 2008 57 1956]

    [15]

    Ma X G, Jiang J J, Liang P 2008 Acta Phys. Sin. 57 3120 (in Chinese)[马新国、江建军、梁 培 2008 57 3120]

    [16]

    Choi W , Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [17]

    Wang C, Bahnemmannt D, Dohrmann J 2000 Chem. Commun. 16 1539

    [18]

    Wang C, Li Q, Wang R 2004 J. Mater. Sci. 39 1899

    [19]

    Zhang Z, Wang C, Zakaria R, Ying J 1998 J. Phys. Chem. B 102 10871

    [20]

    Asahi R, Morikawa T, Ohwaki T, Aoki O K, Taga Y 2001 Science 293 269

    [21]

    Luo H, Takata T, Lee Y, Zhao J,Domen K,Yan Y 2004 Chem. Mater. 16 846

    [22]

    Shi J W, Zheng J T, Hu Y, Zhao Y C 2007 Mater. Chem. Phys. 106 247

    [23]

    Liu H Y, Gao L 2004 Chem. Lett. 33 730

    [24]

    Chen Q L, Tang C Q 2009 Acta Phys. Chim. Sin. 25 915 (in Chinese) [陈琦丽、唐超群2009 物理化学学报 25 915]

    [25]

    Xie Y, Li Y Z, Zhao X J 2007 J. Mole Cata. A 277 119

    [26]

    Gu D E, Yang B C, Hu Y D 2008 Cataly. Commun. 9 1472

    [27]

    Huang L H, Sun C, Liu Y L 2007 Appl. Surf. Sci. 253 7029

    [28]

    Pelaez M, Cruz A , Stathato S, Falaras P, Dionysiou D 2009 Catal.Today 144 19

    [29]

    Huang D S, Chen C F, Li Y H, Zeng R J 2007 Chin. J. Inorg. Chem. 23 728 (in Chinese) [黄东升、陈朝凤、李玉花、曾人杰 2007 无机化学学报 23 728]

    [30]

    Yang X X, Cao C D, Erickson L, Hohn K, Maghirang R, Klabunde K 2009 Appl. Cataly. B 91 657

    [31]

    Segall M D, Lindan P J D, Probert M J, Pickard C J,Hasnip P J,Clark S J, Payne M C 2002 J. Phys. Cond .Matt. 14 2717

    [32]

    Keiji W, Masatoshi S, Hideaki T 2001 Electrochemistry 69 407

    [33]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [34]

    Perdew J P, Zunger A 1981 Phy. Rev. B 23 5048

    [35]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦、柳清菊、朱忠其、张 瑾 2008 57 3760]

    [36]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J, Liu Q 2008 J. Funct. Mater. 39 953 (in Chinese)[赵宗彦、柳清菊、朱忠其、张 瑾、刘 强 2008 功能材料 39 953]

    [37]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys . Rev. Lett. 95 256404

    [38]

    Sato J, Kobayashi H, Inoue Y 2003 J. Phys. Chem. B 107 7970

    [39]

    Zhang Y, Tang C Q, Dai J 2005 Acta Phys. Sin. 54 323 (in Chinese) [张 勇、唐超群、戴 君 2005 54 323]

    [40]

    Tang J W, Ye J H 2005 Chem. Phys. Lett. 410 104

    [41]

    Zhao Z Y, Liu Q J 2008 J. Phys. D 41 025105

    [42]

    Xun L, Dai L, Ma X G, Tang C Q, Tang D H 2007 Acta Phys. Sin. 56 1048(in Chinese) [徐 凌、戴 磊、马新国、唐超群、唐代海2007 56 1048]

    [43]

    Peng L P, Xu L, Yin J W 2007 Acta Phys. Sin. 56 1585(in Chinese)[彭丽萍、徐 凌、尹建武 2007 56 1585]

    [44]

    Jellison G E, Boatner L A, Budai J D, Budai J D, Jeong B S , Norton D P 2003 J. Appl. Phys. 93 9537

    [45]

    Zhu J F, Chen F, Zhang J l, Chen H J, Anpo M 2006 J. Photochem. Photobiol. A 180 196

    [46]

    Ghasemi S, Rahimnejad S, Setayesh S R, Rohani S, Gholami M R 2009 J. Hazard Mater. 172 1573

    [47]

    Linsebigler A L, Lu G Q, Yates J T 1995 Chem. Rev. 95 735

    [48]

    Kim Y I, Atherton S J, Brigham E S, Mallouk T E 1993 Phys.Chem. 97 11802

  • [1] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质.  , 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [2] 张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能. 第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质.  , 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [3] 徐大庆, 赵子涵, 李培咸, 王超, 张岩, 刘树林, 童军. 不同价态Mn掺杂InN电子结构、磁学和光学性质的第一性原理研究.  , 2018, 67(8): 087501. doi: 10.7498/aps.67.20172504
    [4] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究.  , 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [5] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究.  , 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [6] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究.  , 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [7] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究.  , 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [8] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究.  , 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [9] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算.  , 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [10] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究.  , 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [11] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究.  , 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [12] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算.  , 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [13] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [14] 陈秋云, 赖新春, 王小英, 张永彬, 谭世勇. UO2的电子结构及光学性质的第一性原理研究.  , 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [15] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究.  , 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究.  , 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [17] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [18] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究.  , 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  10778
  • PDF下载量:  1679
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-13
  • 修回日期:  2009-11-15
  • 刊出日期:  2010-07-15

/

返回文章
返回
Baidu
map