Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on coordinate transformation design of a cylinderical acoustic cloak with pentamode materials

Lu Zhi-Miao Cai Li Wen Ji-Hong Wen Xi-Sen

Citation:

Research on coordinate transformation design of a cylinderical acoustic cloak with pentamode materials

Lu Zhi-Miao, Cai Li, Wen Ji-Hong, Wen Xi-Sen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The pentamode material, similar to fluid in physical properties, serves as a useful way for the physical implementation of the anisotropic fluid. Based on the similarity, a method to design cloak with the pentamode materials has been put forward by Norris. To analyze the effect factors and rules of the stealth performance of the cloak, the present article is focused on the studying of the coordinate transformation equation of the pentamode cloak design of Norris. Cloaks with different materials parameters distribution can be achieved by adjusting coordinate transformation equations. There are four kinds of the distribution of pentamode cloak material parameters: the density equation being constant, the modulus equation being constant, the density equation being, power equation and the modulus equation being power equation. The average visibility is considered as the standard of stealth effect and is calculated with different coordinate transformation equations by using the software COMSOL. The average visibility is used to analyze the relationship between stealth effect and coordinate transformation equations. The relationship between the coordinate transformation equation and the route of acoustic wave transmission, the relationship between the materials of obstacle and the stealth effect, and the relationship between the route of acoustic wave transmission and the stealth effect are studied. Two results are achieved by comparing these relationships mentioned above. The first is that the stealth effect of a cloak with aluminum obstacle is worse than one with water obstacle. The reason lies in the impedance mismatch between the aluminum and the cloak material. The second result shows that the coordinate transformation equation is related to the distribution of material parameters and the route of acoustic wave transmission and it can affect the scattering property of the cloak. When the route of acoustic wave transmission is close to inner surface of cloak, the stealth effect is relatively poor, while when the route of acoustic wave transmission is close to outer surface of cloak, the stealth effect is relatively well. The reason is that when the route of acoustic wave transmission is close to inner surface of cloak, the acoustic wave affects the obstacle which leads to the enhancement of the scattering of obstacle. So when designing the cloak, not only the physical realization of the cloak material but also the distributed situation of the route of acoustic wave transmission should be considered. And the route of acoustic wave transmission is decided by the coordinate transformation equation. Therefore the stealth performance can be improved by applying proper coordinate transformation equation.
      Corresponding author: Wen Ji-Hong, wenjihong@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51275519).
    [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [2]

    Milton G W, Briane M, Willis J R 2006 New J. Phys. 8 248

    [3]

    Chen H Y, Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001

    [4]

    Cummer S A, Schurig D 2007 New J. Phys. 9 45

    [5]

    Norris A N 2008 Proc. R. Soc. 464 2411

    [6]

    Tian H W 2013 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese) [田华文 2007 硕士学位论文(长沙: 国防科技大学)]

    [7]

    Maldovan M 2013 Nature 503 209

    [8]

    Gao D B, Zeng X W 2012 Acta Phys. Sin. 61 184301 (in Chinese) [高东宝, 曾新吾 2012 61 184301]

    [9]

    Hu J, Zhou X M, Hu G K 2009 ASME 2009 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineerings, USA

    [10]

    Shen H J, Wen J H, Yu D L, Cai L, Wen X S 2012 Acta Phys. Sin. 61 134303 (in Chinese) [沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森 2012 61 134303]

    [11]

    Torrent D, Snchez-Dehesa J 2008 New J. Phys. 10 063015

    [12]

    Zhang S, Xia C G, Fang N 2011 Phys Rev. Lett. 106 024301

    [13]

    Sanchis L, Garcia-chocano V M, Liopis-Pontivero S R 2013 Phys. Rev. Lett. 110 124301

    [14]

    Cheng Y, Liu X J 2009 Appl. Phys. A 94 25

    [15]

    Norris A N, Nagy J A 2010 J. Acoust. Soc. Am. 120 1606

    [16]

    Norris A N, Nagy J A 2011 Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics Santa Fe, New Mexico, USA, May 29-June 2, 2011 p112

    [17]

    Milton G W, Cherkaev A V 1995 J. Eng. Mater. Technol. 117 483

    [18]

    Hladky-Hennion C A, Vasseur O J, Haw G, Croenne C, Haumesser L, Norris N A 2013 Appl Phys. Lett. 102 14413

    [19]

    Layman N C, Naify J C, Martin P T, Calvo C D, Orris J G 2012 Phys. Rev. Lett. 111 024302

    [20]

    Martin A, Kadic M, Schittny R, Buckmann T, Wegener M 2012 Phys. Rev. B 86 155116

    [21]

    Nagy A J 2015 Ph. D. Dissertation (New Jersey: Rutgers University)

    [22]

    Yi H, Wang X M, Mei Y L 2015 Chin. J. Sol. Mech. 36 4 (in Chinese) [易辉, 王晓明, 梅玉林 2015 固体力学学报 36 4]

    [23]

    Cai C X, Wang Z H, Li Q W, Xu Z, Tian X G 2015 J. Phys. D: Appl. Phys. 48 175103

    [24]

    Kadic M, Bukmann T, Schittny R, Gumbsch P, Wegener M 2014 Phys. Rev. A 2 054007

    [25]

    Zhang Y L 2014 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [张迎龙 2014 硕士学位论文(大连: 大连理工大学)]

    [26]

    Bckmann T, Kadic M, Schittny R, Wegener M 2015 Proc. Natl. Acad. Sci. 16 112

    [27]

    Huang Y, Lu X G, Liang G Y, Xu Z 2016 Phys. Lett. A 380 1334

    [28]

    Scandrett L C, Boisvert E J, Howarth R T 2010 J. Acoust. Soc. Am. 127 2856

    [29]

    Tian Y, Wei Q, Cheng Y, Xu Z, Liu X J 2015 Appl. Phys. Lett. 107 221906

    [30]

    Chen Y, Liu X N, Hu G K 2015 Sci. Rep. 5 15745

    [31]

    Chen Y, Liu X N, Xiang P, Hu G K 2016 Advances in Mechanics 46 201609 (in Chinese) [陈毅, 刘晓宁, 向平, 胡更开 2016 力学进展 46 201609]

    [32]

    Zhang X D, Chen H, Wang L, Zhao Z G, Zhao A G 2015 Acta Phys. Sin. 64 134303 (in Chinese) [张向东, 陈虹, 王磊, 赵志高, 赵爱国 2015 64 134303]

    [33]

    Gokhale H N, Cipolla L J, Norris N A 2012 Special Issue of J. Acoustic. Soc. Am. 127 2856

    [34]

    Cheng Y, Yang F, Xu J Y, Liu X J 2008 Appl. Phys. Lett. 92 151913

    [35]

    Cheng Y, Liu X J 2008 J. Appl. Phys. 104 104911

    [36]

    Torrent D, Snchez-Dehesa J 2011 Wave Motion 6 48

    [37]

    Cai L W, Snchez-Dehesa J 2012 J. Acoust. Soc. Am. 4 132

  • [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [2]

    Milton G W, Briane M, Willis J R 2006 New J. Phys. 8 248

    [3]

    Chen H Y, Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001

    [4]

    Cummer S A, Schurig D 2007 New J. Phys. 9 45

    [5]

    Norris A N 2008 Proc. R. Soc. 464 2411

    [6]

    Tian H W 2013 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese) [田华文 2007 硕士学位论文(长沙: 国防科技大学)]

    [7]

    Maldovan M 2013 Nature 503 209

    [8]

    Gao D B, Zeng X W 2012 Acta Phys. Sin. 61 184301 (in Chinese) [高东宝, 曾新吾 2012 61 184301]

    [9]

    Hu J, Zhou X M, Hu G K 2009 ASME 2009 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineerings, USA

    [10]

    Shen H J, Wen J H, Yu D L, Cai L, Wen X S 2012 Acta Phys. Sin. 61 134303 (in Chinese) [沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森 2012 61 134303]

    [11]

    Torrent D, Snchez-Dehesa J 2008 New J. Phys. 10 063015

    [12]

    Zhang S, Xia C G, Fang N 2011 Phys Rev. Lett. 106 024301

    [13]

    Sanchis L, Garcia-chocano V M, Liopis-Pontivero S R 2013 Phys. Rev. Lett. 110 124301

    [14]

    Cheng Y, Liu X J 2009 Appl. Phys. A 94 25

    [15]

    Norris A N, Nagy J A 2010 J. Acoust. Soc. Am. 120 1606

    [16]

    Norris A N, Nagy J A 2011 Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics Santa Fe, New Mexico, USA, May 29-June 2, 2011 p112

    [17]

    Milton G W, Cherkaev A V 1995 J. Eng. Mater. Technol. 117 483

    [18]

    Hladky-Hennion C A, Vasseur O J, Haw G, Croenne C, Haumesser L, Norris N A 2013 Appl Phys. Lett. 102 14413

    [19]

    Layman N C, Naify J C, Martin P T, Calvo C D, Orris J G 2012 Phys. Rev. Lett. 111 024302

    [20]

    Martin A, Kadic M, Schittny R, Buckmann T, Wegener M 2012 Phys. Rev. B 86 155116

    [21]

    Nagy A J 2015 Ph. D. Dissertation (New Jersey: Rutgers University)

    [22]

    Yi H, Wang X M, Mei Y L 2015 Chin. J. Sol. Mech. 36 4 (in Chinese) [易辉, 王晓明, 梅玉林 2015 固体力学学报 36 4]

    [23]

    Cai C X, Wang Z H, Li Q W, Xu Z, Tian X G 2015 J. Phys. D: Appl. Phys. 48 175103

    [24]

    Kadic M, Bukmann T, Schittny R, Gumbsch P, Wegener M 2014 Phys. Rev. A 2 054007

    [25]

    Zhang Y L 2014 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [张迎龙 2014 硕士学位论文(大连: 大连理工大学)]

    [26]

    Bckmann T, Kadic M, Schittny R, Wegener M 2015 Proc. Natl. Acad. Sci. 16 112

    [27]

    Huang Y, Lu X G, Liang G Y, Xu Z 2016 Phys. Lett. A 380 1334

    [28]

    Scandrett L C, Boisvert E J, Howarth R T 2010 J. Acoust. Soc. Am. 127 2856

    [29]

    Tian Y, Wei Q, Cheng Y, Xu Z, Liu X J 2015 Appl. Phys. Lett. 107 221906

    [30]

    Chen Y, Liu X N, Hu G K 2015 Sci. Rep. 5 15745

    [31]

    Chen Y, Liu X N, Xiang P, Hu G K 2016 Advances in Mechanics 46 201609 (in Chinese) [陈毅, 刘晓宁, 向平, 胡更开 2016 力学进展 46 201609]

    [32]

    Zhang X D, Chen H, Wang L, Zhao Z G, Zhao A G 2015 Acta Phys. Sin. 64 134303 (in Chinese) [张向东, 陈虹, 王磊, 赵志高, 赵爱国 2015 64 134303]

    [33]

    Gokhale H N, Cipolla L J, Norris N A 2012 Special Issue of J. Acoustic. Soc. Am. 127 2856

    [34]

    Cheng Y, Yang F, Xu J Y, Liu X J 2008 Appl. Phys. Lett. 92 151913

    [35]

    Cheng Y, Liu X J 2008 J. Appl. Phys. 104 104911

    [36]

    Torrent D, Snchez-Dehesa J 2011 Wave Motion 6 48

    [37]

    Cai L W, Snchez-Dehesa J 2012 J. Acoust. Soc. Am. 4 132

  • [1] Sui Yu-Mei, He Zhao-Jian, Bi Ren-Gui, Kong Peng, Wu Ji-En, Zhao He-Ping, Deng Ke. Ultrathin acoustic metasurface carpet cloaking based on Helmholtz resonances. Acta Physica Sinica, 2024, 73(6): 064301. doi: 10.7498/aps.73.20231706
    [2] Xu Qiang-Rong, Zhu Yang, Lin Kang, Shen Cheng, Lu Tian-Jian. Low-frequency sound insulation performance of novel membrane acoustic metamaterial with dynamic negative stiffness. Acta Physica Sinica, 2022, 71(21): 214301. doi: 10.7498/aps.71.20221058
    [3] Xu Qiang-Rong, Shen Cheng, Han Feng, Lu Tian-Jian. Broadband low-frequency sound insulation performance of quasi-zero stiffness local resonant acoustic metamaterial plate. Acta Physica Sinica, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [4] Shen Hui-Jie, Yu Dian-Long, Tang Zhi-Yin, Su Yong-Sheng, Li Yan-Fei, Liu Jiang-Wei. Characteristics of low-frequency noise elimination in a fluid-filled pipe of dark acoustic metamaterial type. Acta Physica Sinica, 2019, 68(14): 144301. doi: 10.7498/aps.68.20190311
    [5] Tian Yuan, Ge Hao, Lu Ming-Hui, Chen Yan-Feng. Research advances in acoustic metamaterials. Acta Physica Sinica, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [6] He Zi-Hou, Zhao Jing-Bo, Yao Hong, Jiang Juan-Na, Chen Xin. Sound insulation performance of thin-film acoustic metamaterials based on piezoelectric materials. Acta Physica Sinica, 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [7] He Zi-Hou, Zhao Jing-Bo, Yao Hong, Chen Xin. Sound insulation performance of Helmholtz cavity with thin film bottom. Acta Physica Sinica, 2019, 68(21): 214302. doi: 10.7498/aps.68.20191131
    [8] Liu Shao-Gang, Zhao Yue-Chao, Zhao Dan. Bandgap and transmission spectrum characteristics of multilayered acoustic metamaterials with magnetorheological elastomer. Acta Physica Sinica, 2019, 68(23): 234301. doi: 10.7498/aps.68.20191334
    [9] Zhai Shi-Long, Wang Yuan-Bo, Zhao Xiao-Peng. A kind of tunable acoustic metamaterial for low frequency absorption. Acta Physica Sinica, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [10] Zhang Feng-Hui,  Tang Yu-Fan,  Xin Feng-Xian,  Lu Tian-Jian. Micro-perforated acoustic metamaterial with honeycomb-corrugation hybrid core for broadband low frequency sound absorption. Acta Physica Sinica, 2018, 67(23): 234302. doi: 10.7498/aps.67.20181368
    [11] Ding Chang-Lin, Dong Yi-Bao, Zhao Xiao-Peng. Research advances in acoustic metamaterials and metasurface. Acta Physica Sinica, 2018, 67(19): 194301. doi: 10.7498/aps.67.20180963
    [12] Zheng Sheng-Jie, Xia Bai-Zhan, Liu Ting-Ting, Yu De-Jie. Subwavelength topological valley-spin states in the space-coiling acoustic metamaterials. Acta Physica Sinica, 2017, 66(22): 228101. doi: 10.7498/aps.66.228101
    [13] Zhang Yong-Yan, Wu Jiu-Hui, Zhong Hong-Min. Low-frequency wide-band mechanism of a new type acoustic metamaterial with negative modulus. Acta Physica Sinica, 2017, 66(9): 094301. doi: 10.7498/aps.66.094301
    [14] Liu Song, Luo Chun-Rong, Zhai Shi-Long, Chen Huai-Jun, Zhao Xiao-Peng. Inverse Doppler effect of acoustic metamaterial with negative mass density. Acta Physica Sinica, 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [15] Liu Jiao, Hou Zhi-Lin, Fu Xiu-Jun. Mechanism for local resonant acoustic metamaterial. Acta Physica Sinica, 2015, 64(15): 154302. doi: 10.7498/aps.64.154302
    [16] Zhang Xiang-Dong, Chen Hong, Wang Lei, Zhao Zhi-Gao, Zhao Ai-Guo. Theoretical and numerical analysis of layered cylindrical pentamode acoustic cloak. Acta Physica Sinica, 2015, 64(13): 134303. doi: 10.7498/aps.64.134303
    [17] Sun Hong-Wei, Lin Guo-Chang, Du Xing-Wen, P.F. Pai. Simulation and experimental study of a metamaterial panel for mechanical wave absorption. Acta Physica Sinica, 2012, 61(15): 154302. doi: 10.7498/aps.61.154302
    [18] Shen Hui-Jie, Wen Ji-Hong, Yu Dian-Long, Cai Li, Wen Xi-Sen. Research on a cylindrical cloak with active acoustic metamaterial layers. Acta Physica Sinica, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [19] Ding Chang-Lin, Zhao Xiao-Peng, Hao Li-Mei, Zhu Wei-Ren. Acoustic metamaterial with split hollow spheres. Acta Physica Sinica, 2011, 60(4): 044301. doi: 10.7498/aps.60.044301
    [20] Ding Chang-Lin, Zhao Xiao-Peng. Audible sound metamaterial. Acta Physica Sinica, 2009, 58(9): 6351-6355. doi: 10.7498/aps.58.6351
Metrics
  • Abstract views:  7054
  • PDF Downloads:  382
  • Cited By: 0
Publishing process
  • Received Date:  12 April 2016
  • Accepted Date:  30 June 2016
  • Published Online:  05 September 2016

/

返回文章
返回
Baidu
map