-
One of the challenges relating to acoustic metamaterials is to achieve a tunable performance without modifying the structure. In this paper, we propose two types of acoustic metamaterials with a magnetorheological elastomer (MRE), and their tunable band gap structures and the transmission spectra are investigated by the finite element method (FEM). The MRE acts as a cladding layer, and its shear modulus can be changed by an externally applied magnetic field. The cell resonance frequency of acoustic metamaterial is changed. The band gap structures and the transmission spectra of the two kinds of acoustic metamaterials are calculated under various magnetic fields, and it is found that the frequency and width of band gap, the maximum attenuation frequency and transmission loss of transmission spectrum increase with externally applied magnetic field intensity increasing. Meanwhile, two types of the mass-spring models are used to estimate the band gap frequencies of the two kinds of acoustic metamaterials. The FEM results are in good agreement with the estimation results. In addition, the effects of material parameters of core and shell and filling rate on the band gap and transmission spectrum are also studied. The effects of core material parameters on the band gap and transmission spectrum of single-layer acoustic metamaterial are analyzed. It is found that the core mass has an effect on the band gap frequency and width, and the elastic parameter of the core affects the transmission loss of the transmission spectrum. The influences of core and shell material parameter on the band gap and transmission spectrum of double-layer acoustic metamaterial is analyzed by the control variable method. The results show that the core and shell mass affect the band gap frequency, width and pass-band width, and the elastic parameter of the core and the shell affect the transmission loss of the transmission spectrum. As the filling rate increases, the band gap frequency and width of the single- and double-layer MRE acoustic metamaterial increase, the maximum attenuation frequency of the transmission spectrum does not change, and the transmission loss increases. These results will greatly contribute to the application of acoustic metamaterials to controlling the active noise and vibration.
-
Keywords:
- acoustic metamaterials /
- magnetorheological elastomer cladding layers /
- bandgap and transmission spectra /
- magnetic field intensity
[1] Chen M, Xu W S, Liu Y, Yan K, Jiang H, Wang Y R 2018 Appl. Acoust. 139 235Google Scholar
[2] Sheng P, Mei J, Liu Z Y, Wen W J 2007 Physica B 394 256Google Scholar
[3] Fang N C, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar
[4] 张永燕, 吴九汇, 钟宏民 2017 66 094301Google Scholar
Zhang Y Y, Wu J H, Zhong H M 2017 Acta Phys. Sin. 66 094301Google Scholar
[5] Xia B Z, Chen N, Xie L X, Qin Y, Yu D J 2016 Appl. Acoust. 112 1Google Scholar
[6] Yasuda H, Yang J 2015 Phys. Rev. Lett. 114 185502Google Scholar
[7] Zhu X F 2013 Phys. Lett. A 377 1784Google Scholar
[8] Xiao W, Zeng G W, Cheng Y S 2008 Appl. Acoust. 69 255Google Scholar
[9] Romero-García V, Krynkin A, Garcia-Raffi L M, Umnova O, Sánchez-Pérez J V 2013 J. Sound Vibr. 332 184Google Scholar
[10] Krushynska A O, Kouznetsova V G, Geers M G D 2014 J. Mech. Phys. Solids 71 179Google Scholar
[11] Zhou X L, Xu Y L, Liu Y, Lü L L, Peng F J, Wang L Q 2018 Appl. Acoust. 133 97Google Scholar
[12] Wu L Y, Chiang T Y, Tsai C N, Wu M L, Chen L W 2012 Appl. Phys. A 109 523Google Scholar
[13] Li D, Zigoneanu L, Popa B, Cummer S A 2012 J. Acoust. Soc. Am. 132 2823Google Scholar
[14] Zhu R R, Ma C, Zheng B, Musa M Y, Jing L Q, Yang Y H, Wang H P, Dehdashti S, Fang N X, Chen H S 2017 Appl. Phys. Lett. 110 113503Google Scholar
[15] Bi Y F, Jia H, Lu W J, Ji P F, Yang J 2017 Sci. Rep. 7 705Google Scholar
[16] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森 2012 61 134303Google Scholar
Shen H J, Wen J H, Yu D L, Cai L, Wen X S 2012 Acta Phys. Sin. 61 134303Google Scholar
[17] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518Google Scholar
[18] Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301Google Scholar
[19] Zhu X F, Ramezani H, Shi C Z, Zhu J, Zhang X 2014 Phys. Rev. X 4 031042
[20] 刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏 2017 66 024301Google Scholar
Liu S, Luo C R, Zhai S L, Chen H J, Zhao X P 2017 Acta Phys. Sin. 66 024301Google Scholar
[21] Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368Google Scholar
[22] Zhu Y F, Hu J, Fan X D, Yang J, Liang B, Zhu X F, Cheng J C 2018 Nat. Commun. 9 1632Google Scholar
[23] Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C 2016 Nat. Commun. 7 11731Google Scholar
[24] Zhu X F, Liu S C, Xu T, Wang T H, Cheng J C 2010 Chin. Phys. B 19 044301Google Scholar
[25] Zhu X F, Xu T, Liu S C, Cheng J C 2009 J. Appl. Phys. 106 104901Google Scholar
[26] Zhu X F, Zou X Y, Liang B, Cheng J C 2015 J. Appl. Phys. 108 124909
[27] Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar
[28] Li J, Chan C T 2004 Phys. Rev. E 70 055602Google Scholar
[29] Goffaux C, Vigneron J P 2001 Phys. Rev. B 64 075118Google Scholar
[30] Bertoldi K, Boyce M C 2008 Phys. Rev. B 77 052105
[31] Larabi H, Pennec Y, Djafari-Rouhani B, Vasseur J O 2007 Phys. Rev. E 75 066601Google Scholar
[32] Lewińska M A, Kouznetsova V G, van Dommelen J A W, Krushynska A O, Geers M G D 2017 Int. J. Solids Struct. 126–127 163
[33] Gao W T, Xia J P, Sun H X, Yuan S Q, Ge Y, Liu X J 2019 Appl. Phys. Express 12 044002Google Scholar
[34] Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013Google Scholar
[35] Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. Appl. 5 054015Google Scholar
[36] Chen S B, Wang G, Wen J H, Wen X S 2013 J. Sound Vibr. 332 1520Google Scholar
[37] Chen S B, Wen J H, Wang G, Wen X S 2013 Chin. Phys. B 22 074301Google Scholar
[38] Xiao S W, Ma G C, Li Y, Yang Z Y, Sheng P 2015 Appl. Phys. Lett. 106 091904Google Scholar
[39] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫 2019 68 134302Google Scholar
He Z H, Zhao J B, Yao H, Jiang J N, Chen X 2019 Acta Phys. Sin. 68 134302Google Scholar
[40] Shen Y X, Zhu X F, Cai F Y, Ma T, Li F, Xia X X, Li Y C, Wang C Z, Zheng H R 2019 Phys. Rev. Appl. 11 034009Google Scholar
[41] Zhou X L, Chen C Q 2013 Physica B 431 23Google Scholar
[42] Carlson J D, Jolly M R 2000 Mechatronics 10 555Google Scholar
[43] Ginder J M, Clark S M, Schlotter W F, Nichols M E 2002 Int. J. Mod. Phys. B 16 472
[44] Chen L, Gong X L, Jiang W Q, Yao J J, Xia D H, Li W H 2007 J. Mater. Sci. 42 5483Google Scholar
[45] Chen X, Xu X C, Ai S G, Chen H S, Pei Y M 2014 Appl. Phys. Lett. 105 071913Google Scholar
[46] Xu Z L, Tong J, Wu F G 2018 Solid State Commun. 271 51Google Scholar
[47] Wu B, He C F, Wei R J, Zhao H Y 2009 IEEE International Ultrasonics Symposium Beijing, China, November 2−5, 2008 p1484
[48] Davis L C 1999 J. Appl. Phys. 85 3348Google Scholar
[49] Wang G, Shao L H, Liu Y Z, Wen J H 2006 Chin. Phys. B 15 1843Google Scholar
[50] 张帅, 郭书祥, 姚宏, 赵静波, 蒋娟娜, 张吉宁, 贺子厚 2018 人工晶体学报 47 1Google Scholar
Zhang S, Guo S X, Yao H, Zhao J B, Jiang J N, Zhang J N, He Z H 2018 J. Synth. Cryst. 47 1Google Scholar
-
图 1 MRE包覆层声学超材料元胞结构和不可约布里渊区 (a) 单包覆层MRE声学超材料; (b) 双包覆层MRE声学超材料; (c) 正方晶格第一不可约布里渊区
Figure 1. Schematic of the MRE acoustic metamaterial cells and the irreducible first Brillouin zone: (a) Single-layer MRE acoustic metamaterial; (b) double-layer MRE acoustic metamaterial; (c) the irreducible first Brillouin zone of square lattices.
图 5 单包覆层MRE声学超材料带隙随磁场强度变化及有限元法与质量-弹簧模型对比 (a) 磁场强度H = 0—10 kOe; (b) 有限元法与质量弹簧-模型对比
Figure 5. Dependence of the band gap boundaries on the applied magnetic field of single-layer MRE acoustic metamaterial and a comparison of the FEM and the mass-spring model for (a) magnetic field intensity of H = 0–10 kOe, (b) comparison of the FEM and mass-spring model.
图 8 双包覆层MRE声学超材料带隙边界处位移向量场 (a) 第一阶带隙下边界; (b) 第一阶带隙上边界; (c) 第二阶带隙下边界; (d) 第二阶带隙上边界; (e) 图7(a)中E点
Figure 8. Displacement field of the band gap boundaries of the double-layer MRE acoustic metamaterial: (a) The lower boundary and (b) the upper boundary of the first band gaps; (c) the lower boundary and (d) the upper boundary of the second band gap; (e) point E in Fig.7 (a).
图 10 双包覆层MRE声学超材料带隙随磁场强度变化及有限元法与质量-弹簧模型对比 (a) 磁场强度H = 0—10 kOe; (b) 有限元法与质量-弹簧模型对比
Figure 10. Dependence of the band gap boundaries on the applied magnetic field of double-layer MRE acoustic metamaterial and a comparison of the FEM and mass-spring model for (a) magnetic field intensity of H = 0–10 kOe, (b) comparison of the FEM and mass-spring model.
图 12 单包覆层MRE声学超材料传输谱变化 (a) 磁场强度为0, 4, 6, 8 kOe; (b) 芯体材料分别为铝、钛、铜、铅和钨; (c) 填充率增加
Figure 12. Transmission spectra of single-layer MRE acoustic metamaterial change with (a) At magnetic field intensity of 0, 4, 6, and 8 kOe, (b) core materials for aluminum, titanium, copper, lead, and tungsten, (c) the filling rate.
图 13 双包覆层MRE声学超材料传输谱变化 (a) 磁场强度为0, 4, 6, 8 kOe; (b) 芯体材料分别为铝、钛、铜、铅和钨; (c) 壳体材料分别为铝、钛、铜、铅和钨; (d) 随填充率变化
Figure 13. Transmission spectra change of double-layer MRE acoustic metamaterial: (a) At the magnetic field intensity of 0, 4, 6, and 8 kOe; (b) with the core materials for aluminum, titanium, copper, lead, and tungsten, (c) with the shell materials of aluminum, titanium, copper, lead, and tungsten, (d) with filling rate.
表 1 构成MRE声学超材料的材料参数
Table 1. Material properties of the MRE acoustic metamaterials.
材料 密度$\rho /{\rm{kg}} \cdot {{\rm{m}}^{ - 3}}$ 拉梅常数 λ/GPa μ/GPa 纯铁 7900 115.38 76.92 环氧树脂 1180 4.52 1.59 MRE 3009 6.26×10-3 0.4×10-3 表 2 材料参数
Table 2. The material parameters.
材料 密度ρ/kg·m–3 弹性参数 弹性模量E/GPa 泊松比$\upsilon $ 钨 19100 344 0.28 铅 11600 16 0.42 铜 8950 115 0.32 钛 4540 102 0.3 铝 2730 68 0.33 -
[1] Chen M, Xu W S, Liu Y, Yan K, Jiang H, Wang Y R 2018 Appl. Acoust. 139 235Google Scholar
[2] Sheng P, Mei J, Liu Z Y, Wen W J 2007 Physica B 394 256Google Scholar
[3] Fang N C, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar
[4] 张永燕, 吴九汇, 钟宏民 2017 66 094301Google Scholar
Zhang Y Y, Wu J H, Zhong H M 2017 Acta Phys. Sin. 66 094301Google Scholar
[5] Xia B Z, Chen N, Xie L X, Qin Y, Yu D J 2016 Appl. Acoust. 112 1Google Scholar
[6] Yasuda H, Yang J 2015 Phys. Rev. Lett. 114 185502Google Scholar
[7] Zhu X F 2013 Phys. Lett. A 377 1784Google Scholar
[8] Xiao W, Zeng G W, Cheng Y S 2008 Appl. Acoust. 69 255Google Scholar
[9] Romero-García V, Krynkin A, Garcia-Raffi L M, Umnova O, Sánchez-Pérez J V 2013 J. Sound Vibr. 332 184Google Scholar
[10] Krushynska A O, Kouznetsova V G, Geers M G D 2014 J. Mech. Phys. Solids 71 179Google Scholar
[11] Zhou X L, Xu Y L, Liu Y, Lü L L, Peng F J, Wang L Q 2018 Appl. Acoust. 133 97Google Scholar
[12] Wu L Y, Chiang T Y, Tsai C N, Wu M L, Chen L W 2012 Appl. Phys. A 109 523Google Scholar
[13] Li D, Zigoneanu L, Popa B, Cummer S A 2012 J. Acoust. Soc. Am. 132 2823Google Scholar
[14] Zhu R R, Ma C, Zheng B, Musa M Y, Jing L Q, Yang Y H, Wang H P, Dehdashti S, Fang N X, Chen H S 2017 Appl. Phys. Lett. 110 113503Google Scholar
[15] Bi Y F, Jia H, Lu W J, Ji P F, Yang J 2017 Sci. Rep. 7 705Google Scholar
[16] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森 2012 61 134303Google Scholar
Shen H J, Wen J H, Yu D L, Cai L, Wen X S 2012 Acta Phys. Sin. 61 134303Google Scholar
[17] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518Google Scholar
[18] Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301Google Scholar
[19] Zhu X F, Ramezani H, Shi C Z, Zhu J, Zhang X 2014 Phys. Rev. X 4 031042
[20] 刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏 2017 66 024301Google Scholar
Liu S, Luo C R, Zhai S L, Chen H J, Zhao X P 2017 Acta Phys. Sin. 66 024301Google Scholar
[21] Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368Google Scholar
[22] Zhu Y F, Hu J, Fan X D, Yang J, Liang B, Zhu X F, Cheng J C 2018 Nat. Commun. 9 1632Google Scholar
[23] Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C 2016 Nat. Commun. 7 11731Google Scholar
[24] Zhu X F, Liu S C, Xu T, Wang T H, Cheng J C 2010 Chin. Phys. B 19 044301Google Scholar
[25] Zhu X F, Xu T, Liu S C, Cheng J C 2009 J. Appl. Phys. 106 104901Google Scholar
[26] Zhu X F, Zou X Y, Liang B, Cheng J C 2015 J. Appl. Phys. 108 124909
[27] Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar
[28] Li J, Chan C T 2004 Phys. Rev. E 70 055602Google Scholar
[29] Goffaux C, Vigneron J P 2001 Phys. Rev. B 64 075118Google Scholar
[30] Bertoldi K, Boyce M C 2008 Phys. Rev. B 77 052105
[31] Larabi H, Pennec Y, Djafari-Rouhani B, Vasseur J O 2007 Phys. Rev. E 75 066601Google Scholar
[32] Lewińska M A, Kouznetsova V G, van Dommelen J A W, Krushynska A O, Geers M G D 2017 Int. J. Solids Struct. 126–127 163
[33] Gao W T, Xia J P, Sun H X, Yuan S Q, Ge Y, Liu X J 2019 Appl. Phys. Express 12 044002Google Scholar
[34] Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013Google Scholar
[35] Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. Appl. 5 054015Google Scholar
[36] Chen S B, Wang G, Wen J H, Wen X S 2013 J. Sound Vibr. 332 1520Google Scholar
[37] Chen S B, Wen J H, Wang G, Wen X S 2013 Chin. Phys. B 22 074301Google Scholar
[38] Xiao S W, Ma G C, Li Y, Yang Z Y, Sheng P 2015 Appl. Phys. Lett. 106 091904Google Scholar
[39] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫 2019 68 134302Google Scholar
He Z H, Zhao J B, Yao H, Jiang J N, Chen X 2019 Acta Phys. Sin. 68 134302Google Scholar
[40] Shen Y X, Zhu X F, Cai F Y, Ma T, Li F, Xia X X, Li Y C, Wang C Z, Zheng H R 2019 Phys. Rev. Appl. 11 034009Google Scholar
[41] Zhou X L, Chen C Q 2013 Physica B 431 23Google Scholar
[42] Carlson J D, Jolly M R 2000 Mechatronics 10 555Google Scholar
[43] Ginder J M, Clark S M, Schlotter W F, Nichols M E 2002 Int. J. Mod. Phys. B 16 472
[44] Chen L, Gong X L, Jiang W Q, Yao J J, Xia D H, Li W H 2007 J. Mater. Sci. 42 5483Google Scholar
[45] Chen X, Xu X C, Ai S G, Chen H S, Pei Y M 2014 Appl. Phys. Lett. 105 071913Google Scholar
[46] Xu Z L, Tong J, Wu F G 2018 Solid State Commun. 271 51Google Scholar
[47] Wu B, He C F, Wei R J, Zhao H Y 2009 IEEE International Ultrasonics Symposium Beijing, China, November 2−5, 2008 p1484
[48] Davis L C 1999 J. Appl. Phys. 85 3348Google Scholar
[49] Wang G, Shao L H, Liu Y Z, Wen J H 2006 Chin. Phys. B 15 1843Google Scholar
[50] 张帅, 郭书祥, 姚宏, 赵静波, 蒋娟娜, 张吉宁, 贺子厚 2018 人工晶体学报 47 1Google Scholar
Zhang S, Guo S X, Yao H, Zhao J B, Jiang J N, Zhang J N, He Z H 2018 J. Synth. Cryst. 47 1Google Scholar
Catalog
Metrics
- Abstract views: 9051
- PDF Downloads: 129
- Cited By: 0