搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负质量密度声学超材料的反常多普勒效应

刘松 罗春荣 翟世龙 陈怀军 赵晓鹏

引用本文:
Citation:

负质量密度声学超材料的反常多普勒效应

刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏

Inverse Doppler effect of acoustic metamaterial with negative mass density

Liu Song, Luo Chun-Rong, Zhai Shi-Long, Chen Huai-Jun, Zhao Xiao-Peng
PDF
导出引用
  • 能够按照人们的意愿控制声波的传播一直是研究者们想要解决的问题.一类由人工微结构组成的声学超材料吸引了研究者的注意,因为它具有许多天然材料所不能实现的奇特性质,例如负折射、平板聚焦和反常多普勒等.本文中,我们制备了一种二维的负质量密度声学超材料,在频率1560–5580 Hz范围内质量密度为负值,折射率在1500–5480 Hz范围内为负值,设计了一种测量多普勒效应的测试装置,测试了其在1200–6500 Hz内的多普勒效应.实验结果表明:在所制备的声学超材料负折射区域内,以声源的频率为2000 Hz为例,当声源靠近探测器时,探测器探测到的频率为1999.27 Hz,与声源相比有0.73 Hz的减小;而当声源远离探测器时,探测器探测到的频率为2000.68 Hz,与声源相比有0.68 Hz的增大,即在频率点为2000 Hz时,有明显的反常多普勒现象.对整个负区域内进行选点测量,发现在整个负区域内有宽频带的反常多普勒效应现象.
    It is always an issue for researchers to control the propagation of sound wave at will. A kind of acoustic metamaterial built with artificial microunits attracts the attention of researchers, because it possesses many unique properties that cannot be realized by natural materials, such as negative refractive index, slab focusing, and cloak. The Doppler effect leads to the frequency change of a wave because of the relative motion between the observer and the source. In 1968, Veselago[Veselago V G 1968 Soviet Physics Uspekhi 10 509] theoretically proposed that a metamaterial with a negative refraction can result in an inverse Doppler effect. The investigation of inverse Doppler effect has been developed with the improvement of metamaterials. However, the design methods of these metamaterials generally need ideal material parameters, which are difficult to obtain experimentally. Besides, although the inverse Doppler effects are realized by some electromagnetic metamaterials in optical and microwave frequencies, the relevant researches in acoustic metamaterials make slow progress. In this work, a 2D acoustic metamaterial with negative mass density is fabricated. Our previous work has demonstrated that the air in the internal cavity of the unit cell will vibrate back and forth to generate the vibration velocity when the air is driven by a sound source. As the source frequency reaches the resonant frequency, large amounts of energy will be stored in the internal cavity. This accumulation of energy will cause the acceleration of the air in opposite direction to the sound pressure, thus this metamaterial will exhibit negative mass density. In this case, the direction of the phase velocity is exactly opposite to that of the group velocity of the sound wave. Therefore, the inverse Doppler effect of sound wave can be realized by this metamaterial. Since the unit cells with different lengths have different resonant frequencies and there is only weak interaction among the adjacent unit cells, the frequency band of the metamaterial with negative mass density can be broaden by combining several different unit cells. Our previous experiments have demonstrated that the mass density and refractive index of this metamaterial are negative over a broad frequency range from 1560 Hz to 5580 Hz and 1500 Hz to 5480 Hz, respectively. A testing equipment is constructed to measure the Doppler effect of this metamaterial from 1200 Hz to 6500 Hz. The experimental results show that when the sound source witha frequency of 2000 Hz approaches to the detector, the detected frequency is 1999.27 Hz, which is 0.73 Hz smaller than the source frequency; when the sound source recedes from the detector, the detected frequency is 2000.68 Hz, which is 0.68 Hz larger than the source frequency. Therefore, the inverse Doppler effect appears at 2000 Hz. The experimental results within the whole frequency range of negative refractive index show broadband inverse Doppler phenomena.
      通信作者: 赵晓鹏, xpzhao@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11674267,51272215)和国家重点基础研究发展计划(批准号:2012CB921503)资助的课题.
      Corresponding author: Zhao Xiao-Peng, xpzhao@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674267, 51272215) and the National Basic Research Program of China (Grant No. 2012CB921503).
    [1]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [2]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 10

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [5]

    Bongard F, Lissek H, Mosig J R 2010 Phys. Rev. B 82 094306

    [6]

    Zhang S, Park Y S, Li J S, Lu X C, Zhang W L, Zhang X 2009 Phys. Rev. Lett. 102 023901

    [7]

    Zhu W R, Zhao X P, Guo J Q 2008 Appl. Phys. Lett. 92 3

    [8]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [9]

    Zhang X, Liu Z W 2008 Nat. Mater. 7 435

    [10]

    Liu Z W, Lee H, Xiong Y 2007 Science 315 1686

    [11]

    Chen H S, Chen M 2010 Mater. Today 14 34

    [12]

    Chen H J, Zhai S L, Ding C L, Liu S, Luo C R, Zhao X P 2014 J. Appl. Phys. 115 054905

    [13]

    Zhai S L, Chen H J, Ding C L, Zhao X P 2013 J. Phys. D:Appl. Phys. 46 475105

    [14]

    Chen H J, Zeng H C, Ding C L, Luo C R, Zhao X P 2013 J. Appl. Phys. 113 104902

    [15]

    Ding C L, Zhao X P, Hao L M, Zhu W R 2011 Acta Phys. Sin. 60 044301 (in Chinese)[丁昌林, 赵晓鹏, 郝丽梅, 朱卫仁2011 60 044301]

    [16]

    Ding C L, Hao L M, Zhao X P 2010 J. Appl. Phys. 108 074911

    [17]

    Zeng H C, Luo C R, Chen H J, Zhai S L, Ding C L, Zhao X P 2013 Solid State Commun. 173 14

    [18]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013

    [19]

    Cheng Y, Xu J Y, Liu X J 2008 Phys. Rev. B 77 045134

    [20]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [21]

    Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F J 2011 Nat. Phys. 7 52

    [22]

    Veselago V G 1968 Soviet Physics Uspekhi 10 509

    [23]

    Chen J B, Wang Y, Jia B H 2011 Nat. Photonics 5 239

    [24]

    Seddon N, Bearpark T 2003 Science 302 1537

    [25]

    Zhai S L, Zhao X P, Liu S, Shen F L, Li L L, Luo C R 2016 Sci. Rep. 6 32388

    [26]

    Lee S H, Park C M, Seo Y M, Kim C K 2010 Phys. Rev. B 81 241102

  • [1]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [2]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 10

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [5]

    Bongard F, Lissek H, Mosig J R 2010 Phys. Rev. B 82 094306

    [6]

    Zhang S, Park Y S, Li J S, Lu X C, Zhang W L, Zhang X 2009 Phys. Rev. Lett. 102 023901

    [7]

    Zhu W R, Zhao X P, Guo J Q 2008 Appl. Phys. Lett. 92 3

    [8]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [9]

    Zhang X, Liu Z W 2008 Nat. Mater. 7 435

    [10]

    Liu Z W, Lee H, Xiong Y 2007 Science 315 1686

    [11]

    Chen H S, Chen M 2010 Mater. Today 14 34

    [12]

    Chen H J, Zhai S L, Ding C L, Liu S, Luo C R, Zhao X P 2014 J. Appl. Phys. 115 054905

    [13]

    Zhai S L, Chen H J, Ding C L, Zhao X P 2013 J. Phys. D:Appl. Phys. 46 475105

    [14]

    Chen H J, Zeng H C, Ding C L, Luo C R, Zhao X P 2013 J. Appl. Phys. 113 104902

    [15]

    Ding C L, Zhao X P, Hao L M, Zhu W R 2011 Acta Phys. Sin. 60 044301 (in Chinese)[丁昌林, 赵晓鹏, 郝丽梅, 朱卫仁2011 60 044301]

    [16]

    Ding C L, Hao L M, Zhao X P 2010 J. Appl. Phys. 108 074911

    [17]

    Zeng H C, Luo C R, Chen H J, Zhai S L, Ding C L, Zhao X P 2013 Solid State Commun. 173 14

    [18]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013

    [19]

    Cheng Y, Xu J Y, Liu X J 2008 Phys. Rev. B 77 045134

    [20]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [21]

    Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F J 2011 Nat. Phys. 7 52

    [22]

    Veselago V G 1968 Soviet Physics Uspekhi 10 509

    [23]

    Chen J B, Wang Y, Jia B H 2011 Nat. Photonics 5 239

    [24]

    Seddon N, Bearpark T 2003 Science 302 1537

    [25]

    Zhai S L, Zhao X P, Liu S, Shen F L, Li L L, Luo C R 2016 Sci. Rep. 6 32388

    [26]

    Lee S H, Park C M, Seo Y M, Kim C K 2010 Phys. Rev. B 81 241102

  • [1] 胥强荣, 朱洋, 林康, 沈承, 卢天健. 一种具有动态磁负刚度薄膜声学超材料的低频隔声特性.  , 2022, 71(21): 214301. doi: 10.7498/aps.71.20221058
    [2] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为.  , 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [3] 沈惠杰, 郁殿龙, 汤智胤, 苏永生, 李雁飞, 刘江伟. 暗声学超材料型充液管道的低频消声特性.  , 2019, 68(14): 144301. doi: 10.7498/aps.68.20190311
    [4] 田源, 葛浩, 卢明辉, 陈延峰. 声学超构材料及其物理效应的研究进展.  , 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [5] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫. 基于压电材料的薄膜声学超材料隔声性能研究.  , 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [6] 贺子厚, 赵静波, 姚宏, 陈鑫. 薄膜底面Helmholtz腔声学超材料的隔声性能.  , 2019, 68(21): 214302. doi: 10.7498/aps.68.20191131
    [7] 刘少刚, 赵跃超, 赵丹. 基于磁流变弹性体多包覆层声学超材料带隙及传输谱特性.  , 2019, 68(23): 234301. doi: 10.7498/aps.68.20191334
    [8] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器.  , 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [9] 张丰辉, 唐宇帆, 辛锋先, 卢天健. 微穿孔蜂窝-波纹复合声学超材料吸声行为.  , 2018, 67(23): 234302. doi: 10.7498/aps.67.20181368
    [10] 丁昌林, 董仪宝, 赵晓鹏. 声学超材料与超表面研究进展.  , 2018, 67(19): 194301. doi: 10.7498/aps.67.20180963
    [11] 郑圣洁, 夏百战, 刘亭亭, 于德介. 空间盘绕型声学超材料的亚波长拓扑谷自旋态.  , 2017, 66(22): 228101. doi: 10.7498/aps.66.228101
    [12] 张永燕, 吴九汇, 钟宏民. 新型负模量声学超结构的低频宽带机理研究.  , 2017, 66(9): 094301. doi: 10.7498/aps.66.094301
    [13] 陆智淼, 蔡力, 温激鸿, 温熙森. 基于五模材料的圆柱声隐身斗篷坐标变换设计.  , 2016, 65(17): 174301. doi: 10.7498/aps.65.174301
    [14] 刘娇, 侯志林, 傅秀军. 局域共振型声学超材料机理探讨.  , 2015, 64(15): 154302. doi: 10.7498/aps.64.154302
    [15] 苏妍妍, 龚伯仪, 赵晓鹏. 基于双负介质结构单元的零折射率超材料.  , 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [16] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究.  , 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [17] 丁昌林, 赵晓鹏, 郝丽梅, 朱卫仁. 一种基于开口空心球的声学超材料.  , 2011, 60(4): 044301. doi: 10.7498/aps.60.044301
    [18] 汤世伟, 朱卫仁, 赵晓鹏. 光波段多频负折射率超材料.  , 2009, 58(5): 3220-3223. doi: 10.7498/aps.58.3220
    [19] 丁昌林, 赵晓鹏. 可听声频段的声学超材料.  , 2009, 58(9): 6351-6355. doi: 10.7498/aps.58.6351
    [20] 罗辽复, 陆埮, 杨国琛. 论反常作用、轻子结构和μ-e质量差.  , 1966, 22(3): 334-340. doi: 10.7498/aps.22.334
计量
  • 文章访问数:  10112
  • PDF下载量:  522
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-30
  • 修回日期:  2016-10-14
  • 刊出日期:  2017-01-20

/

返回文章
返回
Baidu
map