搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局域共振型声学超材料机理探讨

刘娇 侯志林 傅秀军

引用本文:
Citation:

局域共振型声学超材料机理探讨

刘娇, 侯志林, 傅秀军

Mechanism for local resonant acoustic metamaterial

Liu Jiao, Hou Zhi-Lin, Fu Xiu-Jun
PDF
导出引用
  • 本文以二维固体薄板中的弹性波传播为例, 对基于共振子结构的声学超材料带隙机理进行了探讨, 证明在声学超材料中带隙形成既与共振子对波的散射相位有关, 也与波在共振体之间的几何传播相位有关. 通过调节散射相位和几何传播相位均能实现对色散关系的调控. 基于这一理解, 探究了弹性波超材料中的次波长缺陷态和负折射现象的实现条件.
    Taking the flexural wave propagating in elastic thin plate as an example, we investigate the mechanism for gap opening in the resonator-based acoustic metamaterials. Results show that the band gap in such a kind of structure depends not only on the abrupt phase change of the wave when it is scattered by the resonators, but also on the retarded phase of wave when it is propagating in host. This means that the dispersion of wave in the structure can be adjusted either by the scattering or by the propagating phase. Based on this understanding, we show that the defect state at subwavelength scale (obtained either by changing locally the resonating property of the resonator or by changing locally the distance between the resonators) can be understood simply by the band gap condition. We show further in this paper that, because the dispersion of the metamaterial can be adjusted by the propagating phase, the structures with negative band at a subwavelength scale can also be achieved by arranging the resonators into a compound lattice.
    • 基金项目: 国家自然科学基金(批准号: 11274121)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274121).
    [1]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [2]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [3]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [4]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nature Materials. 5 452

    [5]

    Sheng P, Mei J, Liu Z Y, Wen W J 2007 Phys. B 394 256

    [6]

    Li J S, Chan C T 2004 Phys. Rev. E 70 055602

    [7]

    Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K 2010 Phys. Rev. Lett. 104 054301

    [8]

    Yang Z, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301

    [9]

    Torrent D, Sanchez-Dehesa J 2007 New. J. Phys. 9 323

    [10]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 124909

    [11]

    Ambati M, Fang N, Sun C, Zhang X 2007 Phys. Rev. B 75 195447

    [12]

    Farhat M, Enoch S, Guenneau S, Movchan A B 2008 Phys. Rev. Lett. 101 134501

    [13]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [14]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734

    [15]

    Wu F G, Liu Z Y, Liu Y Y 2004 Phys. Rev. E 69 066609

    [16]

    Wu F G, Hou Z L, Liu Z Y, Liu Y Y 2001 Phys. Lett. A 292 198

    [17]

    Vasseur J O, Hladky-Hennion A C, Djafari-Rouhani B, Duval F, Dubus B, Pennec Y, Deymier P A 2007 J. Appl. Phys. 101 114904

    [18]

    Vasseur J O, Deymier P A, Djafari-Rouhani B, Pennec Y, Hladky-Hennion A C 2008 Phys. Rev. B 77 085415

    [19]

    Khelif A, Choujaa A, Benchabane S, Djafari-Rouhani B, Laude V 2004 Appl. Phys. Lett. 84 4400

    [20]

    Achaoui Y, Laude V, Benchabane S, Khelif A 2013 J. Appl. Phys. 114 104503

    [21]

    Rupin M, Lemoult F, Lerosey G, Roux P 2014 Phys. Rev. Lett. 112 234301

    [22]

    Pourabolghasem R, Khelif A, Mohammadi S, Eftekhar A A, Adibi A 2014 J. Appl. Phys. 116 013514

    [23]

    Lemoult F, Kaina N, Fink M, Lerosey G 2013 Nature Phys. 9 55

    [24]

    Liu M, Hou Z L, Fu X J 2012 Acta Phys. Sin. 61 104302 (in Chinese) [刘敏, 侯志林, 傅秀军 2012 61 104302]

    [25]

    Larabi H, Pennec Y, Djafari-Rouhani B, Vasseur J O 2007 Phys. Rev. E 75 066601

    [26]

    Sainidou R, Stefanou N 2006 Phys. Rev. B 73 184301

    [27]

    Oudich M, Assouar M B, Hou Z L 2010 Appl. Phys. Lett. 97 193503

    [28]

    Torrent D, Mayou D, Sanchez-Dehesa J 2013 Phys. Rev. B 87 115143

    [29]

    Xiao Y, Wen J H, Wen X S 2012 J. Phys. D. Appl. Phys. 45 195401

    [30]

    Colombi A, Roux P, Rupin M 2014 J. Acoust. Soc. Am. 136 EL192

    [31]

    Hou L N, Hou Z L, Fu X J 2014 Acta Phys. Sin. 63 034305 (in Chinese) [侯丽娜, 侯志林, 傅秀军 2014 63 034305]

    [32]

    Yang M, Ma G C, Yang Z Y, and Sheng P 2013 Phys. Rev. Letts. 110 134301

  • [1]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [2]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [3]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [4]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nature Materials. 5 452

    [5]

    Sheng P, Mei J, Liu Z Y, Wen W J 2007 Phys. B 394 256

    [6]

    Li J S, Chan C T 2004 Phys. Rev. E 70 055602

    [7]

    Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K 2010 Phys. Rev. Lett. 104 054301

    [8]

    Yang Z, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301

    [9]

    Torrent D, Sanchez-Dehesa J 2007 New. J. Phys. 9 323

    [10]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 124909

    [11]

    Ambati M, Fang N, Sun C, Zhang X 2007 Phys. Rev. B 75 195447

    [12]

    Farhat M, Enoch S, Guenneau S, Movchan A B 2008 Phys. Rev. Lett. 101 134501

    [13]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [14]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734

    [15]

    Wu F G, Liu Z Y, Liu Y Y 2004 Phys. Rev. E 69 066609

    [16]

    Wu F G, Hou Z L, Liu Z Y, Liu Y Y 2001 Phys. Lett. A 292 198

    [17]

    Vasseur J O, Hladky-Hennion A C, Djafari-Rouhani B, Duval F, Dubus B, Pennec Y, Deymier P A 2007 J. Appl. Phys. 101 114904

    [18]

    Vasseur J O, Deymier P A, Djafari-Rouhani B, Pennec Y, Hladky-Hennion A C 2008 Phys. Rev. B 77 085415

    [19]

    Khelif A, Choujaa A, Benchabane S, Djafari-Rouhani B, Laude V 2004 Appl. Phys. Lett. 84 4400

    [20]

    Achaoui Y, Laude V, Benchabane S, Khelif A 2013 J. Appl. Phys. 114 104503

    [21]

    Rupin M, Lemoult F, Lerosey G, Roux P 2014 Phys. Rev. Lett. 112 234301

    [22]

    Pourabolghasem R, Khelif A, Mohammadi S, Eftekhar A A, Adibi A 2014 J. Appl. Phys. 116 013514

    [23]

    Lemoult F, Kaina N, Fink M, Lerosey G 2013 Nature Phys. 9 55

    [24]

    Liu M, Hou Z L, Fu X J 2012 Acta Phys. Sin. 61 104302 (in Chinese) [刘敏, 侯志林, 傅秀军 2012 61 104302]

    [25]

    Larabi H, Pennec Y, Djafari-Rouhani B, Vasseur J O 2007 Phys. Rev. E 75 066601

    [26]

    Sainidou R, Stefanou N 2006 Phys. Rev. B 73 184301

    [27]

    Oudich M, Assouar M B, Hou Z L 2010 Appl. Phys. Lett. 97 193503

    [28]

    Torrent D, Mayou D, Sanchez-Dehesa J 2013 Phys. Rev. B 87 115143

    [29]

    Xiao Y, Wen J H, Wen X S 2012 J. Phys. D. Appl. Phys. 45 195401

    [30]

    Colombi A, Roux P, Rupin M 2014 J. Acoust. Soc. Am. 136 EL192

    [31]

    Hou L N, Hou Z L, Fu X J 2014 Acta Phys. Sin. 63 034305 (in Chinese) [侯丽娜, 侯志林, 傅秀军 2014 63 034305]

    [32]

    Yang M, Ma G C, Yang Z Y, and Sheng P 2013 Phys. Rev. Letts. 110 134301

  • [1] 刘海洋, 范晓跃, 范豪杰, 李阳阳, 唐天鸿, 王刚. 等离子体轰击单层WS2引入缺陷态对束缚激子光学性质的影响.  , 2024, 73(13): 137802. doi: 10.7498/aps.73.20240475
    [2] 徐琦, 孙小伟, 宋婷, 温晓东, 刘禧萱, 王羿文, 刘子江. 不同缺陷态下具有高光力耦合率的新型一维光力晶体纳米梁.  , 2021, 70(22): 224210. doi: 10.7498/aps.70.20210925
    [3] 刘少刚, 赵跃超, 赵丹. 基于磁流变弹性体多包覆层声学超材料带隙及传输谱特性.  , 2019, 68(23): 234301. doi: 10.7498/aps.68.20191334
    [4] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器.  , 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [5] 丁昌林, 董仪宝, 赵晓鹏. 声学超材料与超表面研究进展.  , 2018, 67(19): 194301. doi: 10.7498/aps.67.20180963
    [6] 张永燕, 吴九汇, 钟宏民. 新型负模量声学超结构的低频宽带机理研究.  , 2017, 66(9): 094301. doi: 10.7498/aps.66.094301
    [7] 刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏. 负质量密度声学超材料的反常多普勒效应.  , 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [8] 龚健, 张利伟, 陈亮, 乔文涛, 汪舰. 石墨烯基双曲色散特异材料的负折射与体等离子体性质.  , 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [9] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究.  , 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [10] 弓巧侠, 赵双双, 段智勇, 马凤英. 结构参量对左手材料通带位置影响的研究.  , 2011, 60(10): 107804. doi: 10.7498/aps.60.107804
    [11] 丁昌林, 赵晓鹏, 郝丽梅, 朱卫仁. 一种基于开口空心球的声学超材料.  , 2011, 60(4): 044301. doi: 10.7498/aps.60.044301
    [12] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 无序对二维声子晶体平板负折射成像的影响.  , 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [13] 童元伟, 毛宇, 庄松林. 光频段多频率域负折射率材料的数值研究.  , 2010, 59(8): 5553-5558. doi: 10.7498/aps.59.5553
    [14] 孔令凯, 郑志强, 冯卓宏, 李小燕, 姜翠华, 明海. 二维空气环型光子晶体的负折射成像特性.  , 2009, 58(11): 7702-7707. doi: 10.7498/aps.58.7702
    [15] 孙明昭, 张淳民, 宋晓平, 梁工英, 孙占波. 基于矩形谐振环的新型复合周期结构左手材料研究.  , 2009, 58(9): 6179-6184. doi: 10.7498/aps.58.6179
    [16] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究.  , 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [17] 张 波, 王 智. 二维空气孔型光子晶体负折射平板透镜的减反层.  , 2007, 56(3): 1404-1408. doi: 10.7498/aps.56.1404
    [18] 董建文, 陈溢杭, 汪河洲. 含奇异材料的掺杂一维光子晶体色散关系和空间局域度理论.  , 2007, 56(1): 268-273. doi: 10.7498/aps.56.268
    [19] 刘亚红, 罗春荣, 赵晓鹏. 同时实现介电常数和磁导率为负的H型结构单元左手材料.  , 2007, 56(10): 5883-5889. doi: 10.7498/aps.56.5883
    [20] 郑 晴, 赵晓鹏, 李明明, 赵 晶. 缺陷对左手材料负折射的调控行为.  , 2006, 55(12): 6441-6446. doi: 10.7498/aps.55.6441
计量
  • 文章访问数:  9850
  • PDF下载量:  756
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-25
  • 修回日期:  2015-03-23
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map