搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单原子Pt吸附于不同原子暴露终端BiOBr{001}面的第一性原理研究

张小超 管美画 张启瑞 张长明 李瑞 刘建新 王雅文 樊彩梅

引用本文:
Citation:

单原子Pt吸附于不同原子暴露终端BiOBr{001}面的第一性原理研究

张小超, 管美画, 张启瑞, 张长明, 李瑞, 刘建新, 王雅文, 樊彩梅

First-principles study of single-atom Pt adsorption on BiOBr{001} surface with different atomic exposure terminations

Zhang Xiao-Chao, Guan Mei-Hua, Zhang Qi-Rui, Zhang Chang-Ming, Li Rui, Liu Jian-Xin, Wang Ya-Wen, Fan Cai-Mei
PDF
HTML
导出引用
  • 基于密度泛函理论(density functional theory, DFT)的第一性原理方法研究了暴露不同原子终端的BiOBr{001}表面以及单原子Pt吸附于BiOBr{001}-BiO不同位置的几何构型、电子结构、光学性质和电荷转移. 计算结果表明: BiOBr{001}面BiO终端暴露可诱导产生表面态且价带和导带能级向低能方向移动, 光氧化性增强, 尤其导带下方出现的表面态能级有助于光生电子-空穴对的分离和迁移, 光吸收显著增强, 且BiOBr{001}面BiO终端的功函数远低于贵金属Pt, 有利于电荷定向转移. 其次, 单原子Pt吸附于BiOBr{001}-BiO为基底的表面, 在禁带中间诱导产生杂质能级, Pt吸附于穴位时吸附能最小, 光响应能力最好且电荷转移量最大, 吸附于顶位和桥位时, 形成开放性的贫电子区域, 因此可预测穴位为Pt原子的吸附位点, 预示其良好的降解有机污染物效果, Pt吸附于BiOBr{001}-BiO的顶位和桥位, 具有潜在的CO2还原或固氮等领域应用.
    In this work, the geometrical configuration, electronic structure, optical properties and charge transfer behavior of BiOBr{001} surface with three different atomic exposure terminations (-BiO, -1Br and -2Br) and single-atom Pt at different adsorption positions on the BiOBr{001}-BiO surface (top, bridge and hollow site) are calculated by the first-principles calculation method based on density functional theory (DFT). More emphasis is placed on the research of the relative rule between single-atom Pt and BiOBr{001} surface. The calculation results show that the BiOBr{001}-BiO system exhibits the appearance of surface energy levels and the shift towards the lower energy for valence band and conduction band, enhancing the photocatalytic oxidation performance, especially, the existence of surface energy levels below the conduction band will contribute to the separation and migration of electron-hole pairs and the significant improvement of photo-response capability. Besides, the work function of BiOBr{001}-BiO system is much lower than one of noble metal Pt, which is beneficial to the directional transfer of photogenerated charge. Therefore, the BiOBr{001}-BiO system should be selected as an ideal substrate for interaction with the noble metal Pt. Furthermore, single-atom Pt is adsorbed at different positions of BiOBr{001}-BiO surface, with induced impurity energy levels in the forbidden band, achieving the smallest adsorption energy, the best photo-response capability. Particularly, the transferred charge number is the largest value (–0.920e) when Pt atom is adsorbed on a hollow site. However, the open electron-poor region will be formed when Pt atom is adsorbed at the top and bridge sites of BiOBr{001}-BiO surface. What is more, our findings should provide the excellent theoretical guidance for achieving the photocatalytic CO2 reduction and nitrogen fixation on the BiOBr{001} surface to build up the top and bridge sites as the adsorption sites of Pt atom. The adsorption sites of Pt atoms are located at the hollow sites of BiOBr{001} surface, which should obtain the high photocatalytic oxidizing activity of degrading organic pollutants. Finally, our work can not only present the basic data for the optimized local electronic structure and photocatalytic application for noble metal decorated BiOBr-based materials, but also provide a kind of research strategy for further exploring and designing efficient noble metal decorated BiOX-based or other semiconductor-based photocatalyst systems.
      通信作者: 张小超, zhangxiaochao@tyut.edu.cn ; 樊彩梅, fancm@163.com
    • 基金项目: 国家自然科学基金(批准号: 21978196, 21676178, 21706179)、山西省优秀青年科学基金(批准号: 201801D211008)和山西省高等学校科技创新计划(批准号: 201802051)资助的课题
      Corresponding author: Zhang Xiao-Chao, zhangxiaochao@tyut.edu.cn ; Fan Cai-Mei, fancm@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21978196, 21676178, 21706179), the Shanxi Provincial Science Foundation for Excellent Young Scholars, China (Grant No. 201801D211008), and the Scientific and Technological Innovation Program of Higher Education Institutions of Shanxi Province, China (Grant No. 201802051)
    [1]

    Li X B, Xiong J, Gao X M, Ma J, Huang J T 2019 J. Hazard. Mater. 387 121690

    [2]

    Li J Y, Dong X A, Sun Y J, Cen W L, Dong F 2018 Appl. Catal. B: Environ. 226 269Google Scholar

    [3]

    Huo Y N, Zhang J, Miao M, Jin Y 2012 Appl. Catal. B: Environ. 111-112 334

    [4]

    Gao Q, Wu X, Zhu R 2020 Constr. Build. Mater. 257 119569Google Scholar

    [5]

    Yang Y, Zhang C, Lai C, Zeng G M, Huang D L, Cheng M, Wang J J, Chen F, Zhou C Y, Xiong W P 2018 Adv Colloid Interface Sci. 254 76Google Scholar

    [6]

    Li T, Zhang X C, Zhang C M, Li R, Liu J X, Lv R, Zhang H, Han P D, Fan C M, Zheng Z F 2019 Phys. Chem. Chem. Phys. 21 868Google Scholar

    [7]

    Ye L Q, Su Y R, Jin X L, Xie H Q, Zhang C 2014 Environ. Sci.: Nano 1 90Google Scholar

    [8]

    Bai S, Li X, Kong Q, Long R, Wang C, Jiang J, Xiong Y 2015 Adv. Mater. 27 3444Google Scholar

    [9]

    Xu B R, Li J, Liu L, Li Y D, Guo S H, Gao Y Q, Li N, Ge L 2019 Chin. J. Catal. 40 713Google Scholar

    [10]

    Chen Y, Wang Y, Li W, Yang Q, Hou Q, Wei L, Liu L, Huang F, Ju M 2017 Appl. Catal. B: Environ. 210 352Google Scholar

    [11]

    Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T 2011 Nat. Chem. 3 634Google Scholar

    [12]

    Wan J, Chen W, Jia C, Zheng L, Dong J, Zheng X, Wang Y, Yan W, Chen C, Peng Q, Wang D, Li Y 2018 Adv. Mater. 30 1705369Google Scholar

    [13]

    Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y 2016 Adv. Mater. 28 2427Google Scholar

    [14]

    Nie L, Mei D H, Xiong H F, Peng B, Ren Z B, Hernandez X I P, Delariva A, Wang M, Engelhard M H, Kovarik L 2017 Science 358 1419Google Scholar

    [15]

    Shi Y, Zhao C, Wei H, Guo J, Liang S, Wang A, Zhang T, Liu J, Ma T 2014 Adv. Mater. 26 8147Google Scholar

    [16]

    Zhang H B, Liu G G, Shi L, Ye J H 2018 Adv. Energy Mater. 8 1701343Google Scholar

    [17]

    Liu H, Fang Z, Su Y, Suo Y, Huang S, Zhang Y, Ding K 2018 Chem. Asian. J. 13 799Google Scholar

    [18]

    Zhang X C, Li G Q, Fan C M, Ding G Y, Wang Y W, Han P D 2014 Comput. Mater. Sci. 95 113Google Scholar

    [19]

    Li H, Shang J, Ai Z, Zhang L 2015 J. Am. Chem. Soc. 137 6393Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

    [22]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [23]

    Zhao Z Y, Dai W W 2014 Inorg. Chem. 53 13001Google Scholar

    [24]

    T T, C Z B, Jia J C, Bei C, Guo Y J 2018 Appl. Surf. Sci. 433 1175Google Scholar

    [25]

    Huang W L, Zhu Q S 2009 J. Comput. Chem. 30 183Google Scholar

    [26]

    Bhachu D S, Moniz S J A, Sathasivam S, Scanlon D O, Walsh A, Bawaked S M, Mokhtar M, Obaid A Y, Parkin I P, Tang J, Carmalt C J 2016 Chem. Sci. 7 4832Google Scholar

    [27]

    Ye L Q, Jin X L, Liu C, Ding C H, Xie H Q, Chu K H, Wong P K 2016 Appl. Catal. B: Environ. 187 281Google Scholar

    [28]

    Guo J Q, Liao X, Lee M H, Hyett G, Huang C C, Hewak D W, Mailis S, Zhou W, Jiang Z 2019 Appl. Catal. B: Environ. 243 502Google Scholar

    [29]

    Zhang X C, Guo T Y, Wang X W, Wang Y W, Fan C M, Zhang H 2014 Appl. Catal. B: Environ. 150-151 486Google Scholar

    [30]

    Liu L P, Zhuang Z B, Xie T, Wang Y G, Li J, Peng Q, Li Y D 2009 J. Am. Chem. Soc. 131 16423Google Scholar

    [31]

    Zhao K, Zhang L, Wang J, Li Q, He W, Yin J J 2013 J. Am. Chem. Soc. 135 15750Google Scholar

    [32]

    Kong T, Wei X M, Zhu G Q, Huang Y H 2017 J. Mater. Sci. 52 5686Google Scholar

    [33]

    Zhang H J, Liu L, Zhou Z 2012 RSC Adv. 2 9224Google Scholar

    [34]

    Ma Z Y, Li P H, Ye L Q, Wang L, Xie H Q, Zhou Y 2018 Catal. Sci. Technol. 8 5129Google Scholar

    [35]

    Zhang Z, Wang Y F, Zhang X C, Zhang C M, Wang Y W, Zhang H, Fan C M 2018 Chem. Pap. –Chem. Zvesti 72 2413

    [36]

    Guo W, Qin Q, Geng L, Wang D, Guo Y, Yang Y 2016 J. Hazard. Mater. 308 374Google Scholar

    [37]

    Wu D P, Wang R, Yang C, An Y P, Lu H, Wang H J, Cao K, Gao Z Y, Zhang W C, Xu F, Jiang K 2019 J.Colloid Interface Sci. 556 111Google Scholar

  • 图 1  不同原子暴露终端BiOBr{001}面及单原子Pt吸附于BiOBr{001}-BiO不同位置的晶体结构模型 (a) -BiO; (b) -1Br; (c) -2Br; (d) TPt; (e) BPt; (f) HPt

    Fig. 1.  The crystal structure model of BiOBr{001} surface with different atom exposure terminations and single atom Pt adsorbed on different positions of BiOBr{001}-BiO: (a) -BiO; (b) -1Br; (c) -2Br; (d) TPt; (e) BPt; (f) HPt.

    图 2  体相BiOBr的(a)能带结构以及(b)总态密度图和原子态密度图

    Fig. 2.  (a) Band structure and (b) total density of states and projected density of states of bulk BiOBr.

    图 3  (a) BiOBr{001}-BiO, (b) BiOBr{001}-1Br和 (c) BiOBr{001}-2Br结构优化后的俯视图

    Fig. 3.  The optimized top view of (a) BiOBr{001}-BiO, (b) BiOBr{001}-1Br, and (c) BiOBr{001}-2Br.

    图 4  不同原子暴露终端BiOBr{001}面的能带结构和态密度图 (a), (b) -BiO; (c), (d) -1Br; (e), (f) -2Br

    Fig. 4.  The band structures and density of states of BiOBr{001} surface with different atom exposure terminations: (a), (b) -BiO; (c), (d) -1Br; (e), (f) -2Br.

    图 5  不同原子暴露端的BiOBr{001}表面的光学吸收谱图

    Fig. 5.  The optical absorption spectrum of the BiOBr{001} surface with different atom exposure terminals.

    图 6  不同原子暴露端BiOBr{001}表面的差分电荷密度图 (a) -BiO; (b) -1Br; (c) -2Br

    Fig. 6.  The difference charge density of the BiOBr{001} surface with different atom exposure terminals: (a) -BiO; (b) -1Br; (c) -2Br.

    图 7  单原子Pt在BiOBr{001}-BiO面不同吸附位置的能带结构和态密度图 (a), (b) TPt; (c), (d) BPt; (e), (f) HPt

    Fig. 7.  The band structure and density of states of single-atom Pt at different adsorption positions on BiOBr{001}- BiO surface: (a), (b) TPt; (c), (d) BPt; (e), (f) HPt.

    图 8  单原子Pt在BiOBr{001}-BiO面不同吸附位置的光学吸收谱图

    Fig. 8.  The optical absorption spectrum of single-atom Pt at different adsorption positions on BiOBr{001}-BiO surface

    图 9  单原子Pt在BiOBr{001}-BiO面不同吸附位置的差分电荷密度图 (a) TPt; (b) BPt; (c) HPt

    Fig. 9.  The differential charge density of single-atom Pt at different adsorption positions on BiOBr{001}-BiO surface: (a) TPt; (b) BPt; (c) HPt.

    图 10  Pt/BiOBr{001}-BiO光催化剂体系的电子转移机理

    Fig. 10.  Possible electron transfer mechanism of Pt/BiOBr{001}-BiO photocatalyst system.

    表 1  不同原子暴露终端BiOBr{001}面的表面能和电子性质计算结果

    Table 1.  The calculation results of the surface energy and electronic properties of the BiOBr{001} surface with different atom exposure terminations.

    SurfaceEsurf/(J·m–2)Erel/(J·m–2)Esurf /(J·m–2) [16]W/eVVBMCBMEg/eVSEL
    {001}-BiO2.244–0.1372.2—2.42.576G –2.020G-F –1.1420.878–1.142—0.126
    {001}-1Br0.005–0.002–0.2—0.37.203G-F 0G 2.3972.397–3.825—0
    {001}-2Br2.142–0.0252.2—2.57.566G-F 0G 2.2172.2170.011—0.128
    下载: 导出CSV

    表 2  单原子Pt在BiOBr{001}-BiO面不同吸附位置的吸附能、功函数和电子性质的计算结果

    Table 2.  The calculation results of the adsorption energy, work function, and electronic properties of single-atom Pt at different adsorption positions on BiOBr{001}-BiO surface.

    SitesEads /(J·m–2)Pt-Bi length/ÅVBMCBMEg/eVPt 5d statesSEL
    T–5.1892.612G-F –2.379G –0.7451.634–2.307— –1.497–0.745—0.063
    B–5.4272.568F –2.045G –0.7411.634–1.688 — –1.609–0.741—0.517
    H–6.0872.831G F –2.101G –0.7461.356–2.051 — –1.777–0.746—-0.013
    下载: 导出CSV

    表 3  Pt/BiOBr{001}-BiO体系的功函数W和Mulliken电荷变化值 ∆Q

    Table 3.  Work function W and Mulliken charge change value ∆Q of Pt/BiOBr{001}-BiO.

    SystemsPtBiOBr{001}-BiOTPt/BiOBr{001}-BiOBPt/BiOBr{001}-BiOHPt/BiOBr{001}-BiO
    Work function /eV5.6502.5763.3003.2543.001
    Pt Mulliken charge ∆Q /e–0.810–0.860–0.920
    下载: 导出CSV
    Baidu
  • [1]

    Li X B, Xiong J, Gao X M, Ma J, Huang J T 2019 J. Hazard. Mater. 387 121690

    [2]

    Li J Y, Dong X A, Sun Y J, Cen W L, Dong F 2018 Appl. Catal. B: Environ. 226 269Google Scholar

    [3]

    Huo Y N, Zhang J, Miao M, Jin Y 2012 Appl. Catal. B: Environ. 111-112 334

    [4]

    Gao Q, Wu X, Zhu R 2020 Constr. Build. Mater. 257 119569Google Scholar

    [5]

    Yang Y, Zhang C, Lai C, Zeng G M, Huang D L, Cheng M, Wang J J, Chen F, Zhou C Y, Xiong W P 2018 Adv Colloid Interface Sci. 254 76Google Scholar

    [6]

    Li T, Zhang X C, Zhang C M, Li R, Liu J X, Lv R, Zhang H, Han P D, Fan C M, Zheng Z F 2019 Phys. Chem. Chem. Phys. 21 868Google Scholar

    [7]

    Ye L Q, Su Y R, Jin X L, Xie H Q, Zhang C 2014 Environ. Sci.: Nano 1 90Google Scholar

    [8]

    Bai S, Li X, Kong Q, Long R, Wang C, Jiang J, Xiong Y 2015 Adv. Mater. 27 3444Google Scholar

    [9]

    Xu B R, Li J, Liu L, Li Y D, Guo S H, Gao Y Q, Li N, Ge L 2019 Chin. J. Catal. 40 713Google Scholar

    [10]

    Chen Y, Wang Y, Li W, Yang Q, Hou Q, Wei L, Liu L, Huang F, Ju M 2017 Appl. Catal. B: Environ. 210 352Google Scholar

    [11]

    Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T 2011 Nat. Chem. 3 634Google Scholar

    [12]

    Wan J, Chen W, Jia C, Zheng L, Dong J, Zheng X, Wang Y, Yan W, Chen C, Peng Q, Wang D, Li Y 2018 Adv. Mater. 30 1705369Google Scholar

    [13]

    Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y 2016 Adv. Mater. 28 2427Google Scholar

    [14]

    Nie L, Mei D H, Xiong H F, Peng B, Ren Z B, Hernandez X I P, Delariva A, Wang M, Engelhard M H, Kovarik L 2017 Science 358 1419Google Scholar

    [15]

    Shi Y, Zhao C, Wei H, Guo J, Liang S, Wang A, Zhang T, Liu J, Ma T 2014 Adv. Mater. 26 8147Google Scholar

    [16]

    Zhang H B, Liu G G, Shi L, Ye J H 2018 Adv. Energy Mater. 8 1701343Google Scholar

    [17]

    Liu H, Fang Z, Su Y, Suo Y, Huang S, Zhang Y, Ding K 2018 Chem. Asian. J. 13 799Google Scholar

    [18]

    Zhang X C, Li G Q, Fan C M, Ding G Y, Wang Y W, Han P D 2014 Comput. Mater. Sci. 95 113Google Scholar

    [19]

    Li H, Shang J, Ai Z, Zhang L 2015 J. Am. Chem. Soc. 137 6393Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

    [22]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [23]

    Zhao Z Y, Dai W W 2014 Inorg. Chem. 53 13001Google Scholar

    [24]

    T T, C Z B, Jia J C, Bei C, Guo Y J 2018 Appl. Surf. Sci. 433 1175Google Scholar

    [25]

    Huang W L, Zhu Q S 2009 J. Comput. Chem. 30 183Google Scholar

    [26]

    Bhachu D S, Moniz S J A, Sathasivam S, Scanlon D O, Walsh A, Bawaked S M, Mokhtar M, Obaid A Y, Parkin I P, Tang J, Carmalt C J 2016 Chem. Sci. 7 4832Google Scholar

    [27]

    Ye L Q, Jin X L, Liu C, Ding C H, Xie H Q, Chu K H, Wong P K 2016 Appl. Catal. B: Environ. 187 281Google Scholar

    [28]

    Guo J Q, Liao X, Lee M H, Hyett G, Huang C C, Hewak D W, Mailis S, Zhou W, Jiang Z 2019 Appl. Catal. B: Environ. 243 502Google Scholar

    [29]

    Zhang X C, Guo T Y, Wang X W, Wang Y W, Fan C M, Zhang H 2014 Appl. Catal. B: Environ. 150-151 486Google Scholar

    [30]

    Liu L P, Zhuang Z B, Xie T, Wang Y G, Li J, Peng Q, Li Y D 2009 J. Am. Chem. Soc. 131 16423Google Scholar

    [31]

    Zhao K, Zhang L, Wang J, Li Q, He W, Yin J J 2013 J. Am. Chem. Soc. 135 15750Google Scholar

    [32]

    Kong T, Wei X M, Zhu G Q, Huang Y H 2017 J. Mater. Sci. 52 5686Google Scholar

    [33]

    Zhang H J, Liu L, Zhou Z 2012 RSC Adv. 2 9224Google Scholar

    [34]

    Ma Z Y, Li P H, Ye L Q, Wang L, Xie H Q, Zhou Y 2018 Catal. Sci. Technol. 8 5129Google Scholar

    [35]

    Zhang Z, Wang Y F, Zhang X C, Zhang C M, Wang Y W, Zhang H, Fan C M 2018 Chem. Pap. –Chem. Zvesti 72 2413

    [36]

    Guo W, Qin Q, Geng L, Wang D, Guo Y, Yang Y 2016 J. Hazard. Mater. 308 374Google Scholar

    [37]

    Wu D P, Wang R, Yang C, An Y P, Lu H, Wang H J, Cao K, Gao Z Y, Zhang W C, Xu F, Jiang K 2019 J.Colloid Interface Sci. 556 111Google Scholar

  • [1] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究.  , 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [2] 张颖, 刘春生. 硅醚/石墨醚异质结构光电性质的理论研究.  , 2021, 70(12): 123102. doi: 10.7498/aps.70.20202193
    [3] 秦文静, 徐波, 孙宝珍, 刘刚. 原子吸附的二维CrI3铁磁半导体电学和磁学性质的第一性原理研究.  , 2021, 70(11): 117101. doi: 10.7498/aps.70.20210090
    [4] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究.  , 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [5] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究.  , 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [6] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究.  , 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [7] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究.  , 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [8] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究.  , 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [9] 陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林. 双层h-BN/Graphene结构稳定性及其掺杂特性的第一性原理研究.  , 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [10] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究.  , 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [11] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究.  , 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [12] 徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田. 氟化硼碳平面的第一性原理研究.  , 2014, 63(10): 107102. doi: 10.7498/aps.63.107102
    [13] 冯小勤, 贾建明, 陈贵宾. 弯曲BN纳米片的电子性质及其调制.  , 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [14] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究.  , 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [15] 孟凡顺, 赵星, 李久会. B掺入Cu∑5晶界间隙位性质的第一性原理研究.  , 2013, 62(11): 117102. doi: 10.7498/aps.62.117102
    [16] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究.  , 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [17] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究.  , 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [18] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究.  , 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [19] 杨冲, 杨春. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究.  , 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [20] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构.  , 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
计量
  • 文章访问数:  7603
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 修回日期:  2020-11-23
  • 上网日期:  2021-04-07
  • 刊出日期:  2021-04-20

/

返回文章
返回
Baidu
map