搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型层状Bi2Se3的第一性原理研究

郭宇 周思 赵纪军

引用本文:
Citation:

新型层状Bi2Se3的第一性原理研究

郭宇, 周思, 赵纪军

First-principle study of new phase of layered Bi2Se3

Guo Yu, Zhou Si, Zhao Ji-Jun
PDF
HTML
导出引用
  • 近年来, 在石墨烯研究热潮的推动下, 众多种类丰富、性能各异的二维化合物材料相继被发现, 其中一些二维材料具有多种同素异构体, 进而呈现出更丰富的性质. 层状Bi2Se3由于其独特的物理性质, 受到人们广泛的关注, 而它的同素异构体尚未有人研究. 本文采用基于密度泛函理论的结构搜索方法, 预测了一个稳定的β-Bi2Se3新相, 它具有良好的动力学和热力学稳定性, 并在低Bi2Se3源化学势条件下容易形成. 单层β-Bi2Se3是一个直接带隙为2.44 eV的二维半导体, 其电子载流子有效质量低至0.52m0, 在可见光范围内具有高达105 cm–1的光吸收系数, 并且能带边缘位置适中, 可用于光催化水分解制氢气. 此外, 由于β-Bi2Se3在垂直层面方向的镜面对称性破缺, 能够产生面外极化强度, 具有0.58 pm/V的面外压电系数. 鉴于其新颖的电子特性, 二维β-Bi2Se3在未来的电子器件中可能发挥重要的作用.
    Recently, the boom of graphene has aroused great interest in searching for other two-dimensional (2D) compound materials, which possess many intriguing physical and chemical properties. Interestingly, 2D allotropes of differing atomic structures show even more diverse properties. The Bi2Se3 has attracted much attention due to its unique physical properties, while its allotrope has not been investigated. Based on first-principle calculations, here in this work we predict a new phase of Bi2Se3 monolayer with outstanding dynamic and thermal stabilities, named as β-Bi2Se3. Notably, the β-Bi2Se3 monolayer is a semiconductor with a modest direct band gap of 2.40 eV and small effective mass down to 0.52m0, large absorption coefficient of 105 cm–1 in the visible-light spectrum, suitable band edge positions for photocatalysis of water splitting. Moreover, the breaking of mirror symmetry in β-Bi2Se3 along the out-of-plane direction induces vertical dipolar polarization, yielding a remarkable out-of-plane piezoelectric coefficient of 0.58 pm/V. These exceptional physical properties render the layered Bi2Se3 a promising candidate for future high-speed electronics and optoelectronics.
      通信作者: 周思, sizhou@dlut.edu.cn
    • 基金项目: 中国博士后科学基金(批准号: BX20190052, 2020M670739)、国家自然科学基金(批准号: 11974068)和中央高校基础研究经费(批准号: DUT20LAB110)资助的课题
      Corresponding author: Zhou Si, sizhou@dlut.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant Nos. BX20190052, 2020M670739), the National Natural Science Foundation of China (Grant No. 11974068), and the Fundamental Research Funds for the Central Universities of China (Grant No. DUT20LAB110)
    [1]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [2]

    Kong D, Chen Y, Cha J J, Zhang Q, Analytis J G, Lai K, Liu Z, Hong S S, Koski K J, Mo S K 2011 Nat. Nanotechnol. 6 705Google Scholar

    [3]

    Brom J E, Ke Y, Du R, Won D, Weng X, Andre K, Gagnon J C, Mohney S E, Li Q, Chen K 2012 Appl. Phys. Lett. 100 162110Google Scholar

    [4]

    Alegria L D, Schroer M D, Chatterjee A, Poirier G R, Pretko M, Patel S K, Petta J R 2012 Nano Lett. 12 4711Google Scholar

    [5]

    Alegria L D, Petta J R 2012 Nanotechnology 23 435601Google Scholar

    [6]

    Le P H, Wu K H, Luo C W, Leu J 2013 Thin Solid Films 534 659Google Scholar

    [7]

    Hirahara T, Sakamoto Y, Takeichi Y, Miyazaki H, Kimura S, Matsuda I, Kakizaki A, Hasegawa S 2010 Phys. Rev. B 82 155309Google Scholar

    [8]

    Yu X, He L, Lang M, Jiang W, Xiu F, Liao Z, Wang Y, Kou X, Zhang P, Tang J 2012 Nanotechnology 24 015705Google Scholar

    [9]

    Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C 2010 Adv. Mater. 22 4002Google Scholar

    [10]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J 2009 Nat. Phys. 5 398Google Scholar

    [11]

    Bansal N, Koirala N, Brahlek M, Han M G, Zhu Y, Cao Y, Waugh J, Dessau D S, Oh S 2014 Appl. Phys. Lett. 104 241606Google Scholar

    [12]

    Chen S, Zhao C, Li Y, Huang H, Lu S, Zhang H, Wen S 2014 Opt. Mater. Express 4 587Google Scholar

    [13]

    Sun Y, Cheng H, Gao S, Liu Q, Sun Z, Xiao C, Wu C, Wei S, Xie Y 2012 J. Am. Chem. Soc. 134 20294Google Scholar

    [14]

    Min Y, Park G, Kim B, Giri A, Zeng J, Roh J W, Kim S I, Lee K H, Jeong U 2015 ACS Nano 9 6843Google Scholar

    [15]

    Xu H, Chen G, Jin R, Chen D, Wang Y, Pei J, Zhang Y, Yan C, Qiu Z 2014 Crystengcomm 16 3965Google Scholar

    [16]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [17]

    Li Y, Xu L, Liu H, Li Y 2014 Chem. Soc. Rev. 43 2572Google Scholar

    [18]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [19]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [20]

    Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91 115433Google Scholar

    [21]

    Mogulkoc Y, Modarresi M, Mogulkoc A, Ciftci Y O 2016 Comput. Mater. Sci. 124 23Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [26]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [27]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [28]

    Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [29]

    Barnett R N, Landman U 1993 Phys. Rev. B 48 2081Google Scholar

    [30]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [31]

    Wang Y, Lv J, Zhu L, Ma Y 2010 Phys. Rev. B 82 094116Google Scholar

    [32]

    Wang Y, Miao M, Lv J, Zhu L, Yin K, Liu H, Ma Y 2012 J. Chem. Phys. 137 224108Google Scholar

    [33]

    Han N, Liu H, Zhou S, Zhao J 2016 J. Phys. Chem. C 120 14699Google Scholar

    [34]

    Zhan L B, Yang C L, Wang M S, Ma X G 2020 Physica E 124 114272Google Scholar

    [35]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [36]

    Graziano G, Klimeš J, Fernandez Alonso F, Michaelides A 2012 J. Phys.-Condes. Matter 24 424216Google Scholar

    [37]

    Cai Y, Zhang G, Zhang Y W 2014 Sci. Rep. 4 6677Google Scholar

    [38]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424Google Scholar

    [39]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [40]

    Ma Z, Zhuang J, Zhang X, Zhou Z 2018 Front. Phys. 13 138104Google Scholar

    [41]

    Zhang X, Zhang Z, Wu D, Zhang X, Zhao X, Zhou Z 2018 Small Methods 2 1700359Google Scholar

    [42]

    Beal A R, Hughes H P 1979 Solid State Phys. 12 881Google Scholar

    [43]

    Duerloo K N, Ong M T, Reed E J 2012 J. Phys. Chem. Lett. 3 2871Google Scholar

    [44]

    King Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [45]

    Hangleiter A, Hitzel F, Lahmann S, Rossow U 2003 Appl. Phys. Lett. 83 1169Google Scholar

    [46]

    Shimada K 2006 Jpn. J. Appl. Phys. 45 L358Google Scholar

    [47]

    Guo Y, Zhou S, Bai Y, Zhao J 2017 Appl. Phys. Lett. 110 163102Google Scholar

  • 图 1  (a) α-Bi2Se3的原子结构; (b)单层β-Bi2Se3结构的俯视图(上图)和侧视图(下图); (c)双层β-Bi2Se3结构的俯视图(上图)和侧视图(下图); (d)经过10 ps第一性原理分子动力学模拟, 得到了300 K时Bi2Se3单层的平衡结构; (e) β-Bi2Se3的声子谱; (f) β-Bi2Se3单层的电子局域函数

    Fig. 1.  (a) Atomic structure of α-Bi2Se3; (b) the top and side views of monolayer β-Bi2Se3; (c) the top and side views of bilayer β-Bi2Se3; (d) snapshots of the equilibrium structures of the β-Bi2Se3 monolayer at 300 K after 10 ps ab initio molecular dynamic simulation; (e) phonon dispersion of monolayer β-Bi2Se3; (f) electron localization function for monolayer β-Bi2Se3.

    图 A1  CALYPSO搜索得到的几个较低能量的Bi2Se3单层结构(a)及对应的声子谱(b), 其中Bi2Se3-1, Bi2Se3-2, Bi2Se3-3的形成能分别为–0.15, –0.12, –0.09 eV/atom

    Fig. A1.  Some typical low-energy structures (a) of freestanding Bi2Se3 monolayer predicted by the CALYPSO code and corresponding phonon dispersions (b). The formation energy of Bi2Se3-1, Bi2Se3-2, Bi2Se3-3 are –0.15, –0.12, –0.09 eV/atom respectively.

    图 A2  温度为300 K时β-Bi2Se3单层的能量-时间变化 曲线

    Fig. A2.  Variations of temperature and energy with the time of AIMD simulation for β-Bi2Se3 monolayer at 300 K.

    图 2  α-Bi2Se3β-Bi2Se3体系表面自由能的化学势相图

    Fig. 2.  Chemical potential phase diagram of surface free ener-gy for α-Bi2Se3 and β-Bi2Se3.

    图 3  (a)不考虑SOC和(b)考虑SOC时, 采用HSE06泛函计算得到的β-Bi2Se3的能带结构和LDOS

    Fig. 3.  The electronic band structures (left panel) and LDOS (right panel) (a) without and (b) with SOC effect for monolayer β-Bi2Se3 using HSE06 functional, respectively.

    图 4  (a)采用HSE06泛函并且考虑SOC效应的双层(左图)和块体(右图)β-Bi2Se3的能带结构; (b)单层β-Bi2Se3带隙随双轴应变的变化

    Fig. 4.  (a) The electronic band structures for bilayer (left panel) and bulk (right panel) β-Bi2Se3 based on HSE06 level with SOC effect; (d) effect of biaxial strain on band gap of monolayer β-Bi2Se3.

    图 A3  不同堆叠方式的双层β-Bi2Se3 (a)能量最低的β-Bi2Se3双层结构, 将它的能量设定为0 eV; (b)相对能量为0.32 eV;(c)相对能量为0.55 eV

    Fig. A3.  β-Bi2Se3 bilayer with different stacking types and their relative energies: (a) the atomic structure of β-Bi2Se3 bilayer with the lowest energy, and its energy is set to 0 eV; the bilayer structures with relative energies of 0.32 eV (b) and 0.55 eV (c), respectively.

    图 5  (a)单层β-Bi2Se3的VBM和CBM对比pH = 7和pH = 0的氧化还原电势; (b)单层β-Bi2Se3的光吸收系数, λ是波长, 虚线中间区域表示可见光区

    Fig. 5.  (a) The location of VBM and CBM relative to vacuum energy of monolayer β-Bi2Se3 at pH = 0 and 7; (b) optical absorption coefficient for monolayer β-Bi2Se3. λ is the wave length, and the area between the red and the purple represents the visible range

    表 1  单层、双层和块体β-Bi2Se3相对真空能级的价带顶VBM和导带底CBM, 空穴和电子沿着xy方向的有效质量(mxh, myh, mxe, mye). 载流子有效质量以自由电子的静止质量m0为单位

    Table 1.  The VBM and CBM related to vacuum level for monolayer, bilayer and bulk β-Bi2Se3, and the corresponding carrier effective mass. m0 is the electron rest mass.

    β-Bi2Se3VBM/eVCBM/eVmxhmxemyhmye
    Monolayer–5.82–3.437.880.705.690.66
    Bilayer–5.00–4.242.550.522.360.52
    Bulk0.650.630.650.67
    下载: 导出CSV
    Baidu
  • [1]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [2]

    Kong D, Chen Y, Cha J J, Zhang Q, Analytis J G, Lai K, Liu Z, Hong S S, Koski K J, Mo S K 2011 Nat. Nanotechnol. 6 705Google Scholar

    [3]

    Brom J E, Ke Y, Du R, Won D, Weng X, Andre K, Gagnon J C, Mohney S E, Li Q, Chen K 2012 Appl. Phys. Lett. 100 162110Google Scholar

    [4]

    Alegria L D, Schroer M D, Chatterjee A, Poirier G R, Pretko M, Patel S K, Petta J R 2012 Nano Lett. 12 4711Google Scholar

    [5]

    Alegria L D, Petta J R 2012 Nanotechnology 23 435601Google Scholar

    [6]

    Le P H, Wu K H, Luo C W, Leu J 2013 Thin Solid Films 534 659Google Scholar

    [7]

    Hirahara T, Sakamoto Y, Takeichi Y, Miyazaki H, Kimura S, Matsuda I, Kakizaki A, Hasegawa S 2010 Phys. Rev. B 82 155309Google Scholar

    [8]

    Yu X, He L, Lang M, Jiang W, Xiu F, Liao Z, Wang Y, Kou X, Zhang P, Tang J 2012 Nanotechnology 24 015705Google Scholar

    [9]

    Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C 2010 Adv. Mater. 22 4002Google Scholar

    [10]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J 2009 Nat. Phys. 5 398Google Scholar

    [11]

    Bansal N, Koirala N, Brahlek M, Han M G, Zhu Y, Cao Y, Waugh J, Dessau D S, Oh S 2014 Appl. Phys. Lett. 104 241606Google Scholar

    [12]

    Chen S, Zhao C, Li Y, Huang H, Lu S, Zhang H, Wen S 2014 Opt. Mater. Express 4 587Google Scholar

    [13]

    Sun Y, Cheng H, Gao S, Liu Q, Sun Z, Xiao C, Wu C, Wei S, Xie Y 2012 J. Am. Chem. Soc. 134 20294Google Scholar

    [14]

    Min Y, Park G, Kim B, Giri A, Zeng J, Roh J W, Kim S I, Lee K H, Jeong U 2015 ACS Nano 9 6843Google Scholar

    [15]

    Xu H, Chen G, Jin R, Chen D, Wang Y, Pei J, Zhang Y, Yan C, Qiu Z 2014 Crystengcomm 16 3965Google Scholar

    [16]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [17]

    Li Y, Xu L, Liu H, Li Y 2014 Chem. Soc. Rev. 43 2572Google Scholar

    [18]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [19]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [20]

    Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91 115433Google Scholar

    [21]

    Mogulkoc Y, Modarresi M, Mogulkoc A, Ciftci Y O 2016 Comput. Mater. Sci. 124 23Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [26]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [27]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [28]

    Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [29]

    Barnett R N, Landman U 1993 Phys. Rev. B 48 2081Google Scholar

    [30]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [31]

    Wang Y, Lv J, Zhu L, Ma Y 2010 Phys. Rev. B 82 094116Google Scholar

    [32]

    Wang Y, Miao M, Lv J, Zhu L, Yin K, Liu H, Ma Y 2012 J. Chem. Phys. 137 224108Google Scholar

    [33]

    Han N, Liu H, Zhou S, Zhao J 2016 J. Phys. Chem. C 120 14699Google Scholar

    [34]

    Zhan L B, Yang C L, Wang M S, Ma X G 2020 Physica E 124 114272Google Scholar

    [35]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [36]

    Graziano G, Klimeš J, Fernandez Alonso F, Michaelides A 2012 J. Phys.-Condes. Matter 24 424216Google Scholar

    [37]

    Cai Y, Zhang G, Zhang Y W 2014 Sci. Rep. 4 6677Google Scholar

    [38]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424Google Scholar

    [39]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [40]

    Ma Z, Zhuang J, Zhang X, Zhou Z 2018 Front. Phys. 13 138104Google Scholar

    [41]

    Zhang X, Zhang Z, Wu D, Zhang X, Zhao X, Zhou Z 2018 Small Methods 2 1700359Google Scholar

    [42]

    Beal A R, Hughes H P 1979 Solid State Phys. 12 881Google Scholar

    [43]

    Duerloo K N, Ong M T, Reed E J 2012 J. Phys. Chem. Lett. 3 2871Google Scholar

    [44]

    King Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [45]

    Hangleiter A, Hitzel F, Lahmann S, Rossow U 2003 Appl. Phys. Lett. 83 1169Google Scholar

    [46]

    Shimada K 2006 Jpn. J. Appl. Phys. 45 L358Google Scholar

    [47]

    Guo Y, Zhou S, Bai Y, Zhao J 2017 Appl. Phys. Lett. 110 163102Google Scholar

  • [1] 余跃, 杨恒玉, 周五星, 欧阳滔, 谢国锋. 第一性原理研究单层Ge2X4S2 (X = P, As)的热电性能.  , 2023, 72(7): 077201. doi: 10.7498/aps.72.20222244
    [2] 黄文军, 王亚平, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.208Ni0.333Co0.042Mn0.417O2的电子结构和缺陷性质.  , 2021, 70(20): 208201. doi: 10.7498/aps.70.20210398
    [3] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响.  , 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [4] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究.  , 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [5] 许宏, 苑争一, 黄彤飞, 王啸, 陈正先, 韦进, 张翔, 黄元. 层状材料褶皱对几种地质活动机理研究的启示.  , 2020, 69(2): 026101. doi: 10.7498/aps.69.20190122
    [6] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性.  , 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [7] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [8] 林传金, 郑锋, 朱梓忠. 锂离子电池正极材料Li2FeO2的电子结构性质和Li扩散.  , 2019, 68(15): 157201. doi: 10.7498/aps.68.20190213
    [9] 张东, 娄文凯, 常凯. 半导体极性界面电子结构的理论研究.  , 2019, 68(16): 167101. doi: 10.7498/aps.68.20191239
    [10] 李柱松, 朱泰山. 超晶格和层状结构传热特性的连续模型及其在能源材料设计中的应用.  , 2016, 65(11): 116802. doi: 10.7498/aps.65.116802
    [11] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质.  , 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [12] 韩文鹏, 刘红. 拉伸形变下BC3纳米管的能带结构.  , 2010, 59(6): 4194-4201. doi: 10.7498/aps.59.4194
    [13] 陈祥磊, 张杰, 杜淮江, 周先意, 叶邦角. 化合物半导体材料的正电子寿命计算.  , 2010, 59(1): 603-608. doi: 10.7498/aps.59.603
    [14] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算.  , 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [15] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构.  , 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [16] 赵文彬, 张冠军, 严 璋. 半导体闪络引起的材料表面破坏现象研究.  , 2008, 57(8): 5130-5137. doi: 10.7498/aps.57.5130
    [17] 冯 晶, 肖 冰, 陈敬超. CuInSe2电子结构与光学性质的第一性原理计算.  , 2007, 56(10): 5990-5995. doi: 10.7498/aps.56.5990
    [18] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究.  , 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [19] 陈 丽, 李 华. 新型超导材料MgCNi3的电子结构与超导电性研究.  , 2004, 53(3): 922-926. doi: 10.7498/aps.53.922
    [20] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究.  , 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
计量
  • 文章访问数:  10971
  • PDF下载量:  536
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2020-09-19
  • 上网日期:  2021-01-09
  • 刊出日期:  2021-01-20

/

返回文章
返回
Baidu
map