Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Solving the qubit coupled with reservoir under time-varying external field with Ket-Bra Entangled State Method

Ren Yi-Chong Fan Hong-Yi

Citation:

Solving the qubit coupled with reservoir under time-varying external field with Ket-Bra Entangled State Method

Ren Yi-Chong, Fan Hong-Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we first make a brief review of the general method of solving master equation of density operator, which includes the C-number method method and the super-operator method. The C-number can transform quantum master equation into Fokker-Plank equation or the differential equation of density matrix elements, and this method has a wide applicable range but the Fokker-Plank equation and differential equation are difficult to solve. Besides, the solution is not always applicable for any initial condition. The super-operator method can solve master equation efficiently compared with C-number method, however the solving process of super-operator method mostly depends on the characteristics of Lie algebra. For instance, if the corresponding Lindblad operator can be divided into the generators of Su(2) or Su(1,1) Lie group, the super-operator is no longer applicable. Thus although super-operator is more efficiently than C-number method, it has a narrow applicable range. Furthermore, other researchers have made much effort to develop super-operator method, for instance, S.J. Wang proposed the left and right action operator, the left operator is the same as the general operator, while the right action operator from the right side acts on other general operator, thus the explicit formation of super-operator can be given by this method. Fan proposed the thermal entangled state representation which can convert operator between real mode and fictitious mode. All these developments depend on Lie algebra, thus they all have a narrow applicable range just like super-operator method. We introduce a new Ket-Bra entangled state (KBES) method in this paper, which can transform master equation into Schrodinger-like equation with the corresponding Ket-Bra entangled state. Then one can use the method of Schrodinger equation such as time evolution method, perturbation method, etc. to solve the master equation. Compared with C-number method and super-operator method, the KBES method has several merits. 1) A wide applicable range, KBES method is applicable for any master equation of finite-level system in theory. 2) Compatibility with computer programming, the most crucial procedure is to calculate the exponent of Lindblad operator eFt which needs the diagonalization of F, and all this can be finished by computer. 3) Most mature methods of Schrodinger equation can be used to solve master equation because of the KBES method can transform master equation into Schrodinger-like equation. Then we study the model which two-level qubit is coupled with reservoir under time-varying external field, the corresponding master equation is deduced and solved by KBES method. Furthermore, we analyze the decoherence evolution of density operator and we consider the entanglement evolutions of two uncoupled qubit cases. We find that the external field seriously influences the decoherence process. The off-diagonal elements 10(t) become damply oscillated when the external field exists, and the frequency of oscillate keeps growing along with . Besides, the dynamic evolution of concurrence is also influenced by the external field, which leads to the occurrence of both entanglement sudden death and entanglement sudden birth, while the last ESB phenomenon only happens under the external field. Thus, we thought that one can suppress the decoherence and disentanglement process by exerting suitable time-varying external field on the open system, of course, the suitable external field can also be obtained by our KBES method in theory.
      Corresponding author: Ren Yi-Chong, rych@mail.ustc.edu.cn
    • Funds: Projec supported by the National Natural Science Foundation of China (Grant No. 11574295).
    [1]

    Ji Y H, Hu J J, Hu Y 2012 Chin. Phys. B 21 110304

    [2]

    Ji Y H, Liu Y M, Wang Z S 2011 Chin. Phys. B 20 070304

    [3]

    Chatuverdi S, Srinivassan V 1991 J. Mod. Opt. 38 777

    [4]

    Aralo-Aguilar L M, Moya-Cessa H 1998 Journal of the European Optical Society Part B 10 671

    [5]

    Ren Y C, Fan H Y {2015 International Journal of Theoretical Physics 55 2089

    [6]

    Ren Y C, Fan H Y 2015 arXiv preprint {arXiv: 1509. 01001

    [7]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [8]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [9]

    Yu T, Eberly J H 2009 Science 323 598

    [10]

    Xu X B, Liu J M, Yu P F 2008 Chin. Phys. B 17 456

    [11]

    Carmichael, Howard J 2014 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer Press) pp29-42

    [12]

    Lu H X, Yang J, Zhang Y D, et al. 2003 Phys. Rev. A 67 024101

    [13]

    Wang S J, Cao J M, Weiguny A 1989 Phys. Rev. A 40 1225

    [14]

    Song J, Fan H Y, Zhou J 2011 Acta Phys. Sin. 60 110302 (in Chinese) [宋军, 范洪义, 周军 2011 60 110302]

    [15]

    Fan H Y, Li X C {2012 Acta Phys. Sin. 61 77 (in Chinese) [范洪义, 李学超 2012 61 77]

    [16]

    Fan H Y, Hu L Y 2010 The Thermal Entanglement Entangled-State Representation of Open Quantum System (Shanghai: Shanghai Jiao Tong University Press) pp114-160 (in Chinese) [范洪义, 胡利云 2010 开放量子系统退相干的纠缠态表象论 (上海: 上海交通大学出版社) 第114页-160页]

    [17]

    Cong S 2014 Control of Quantum Systems: Theory and Methods (Wiley Press) pp73-96

    [18]

    Viola L, Lloyd S 1998 Phys. Rev. A 58 2733

    [19]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [20]

    Yu T, Eberly J H 2009 Science 323 5914

    [21]

    Kowalewska-Kudłaszyk A, Leoński W 2010 Physica Scripta T140 014051

  • [1]

    Ji Y H, Hu J J, Hu Y 2012 Chin. Phys. B 21 110304

    [2]

    Ji Y H, Liu Y M, Wang Z S 2011 Chin. Phys. B 20 070304

    [3]

    Chatuverdi S, Srinivassan V 1991 J. Mod. Opt. 38 777

    [4]

    Aralo-Aguilar L M, Moya-Cessa H 1998 Journal of the European Optical Society Part B 10 671

    [5]

    Ren Y C, Fan H Y {2015 International Journal of Theoretical Physics 55 2089

    [6]

    Ren Y C, Fan H Y 2015 arXiv preprint {arXiv: 1509. 01001

    [7]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [8]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [9]

    Yu T, Eberly J H 2009 Science 323 598

    [10]

    Xu X B, Liu J M, Yu P F 2008 Chin. Phys. B 17 456

    [11]

    Carmichael, Howard J 2014 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer Press) pp29-42

    [12]

    Lu H X, Yang J, Zhang Y D, et al. 2003 Phys. Rev. A 67 024101

    [13]

    Wang S J, Cao J M, Weiguny A 1989 Phys. Rev. A 40 1225

    [14]

    Song J, Fan H Y, Zhou J 2011 Acta Phys. Sin. 60 110302 (in Chinese) [宋军, 范洪义, 周军 2011 60 110302]

    [15]

    Fan H Y, Li X C {2012 Acta Phys. Sin. 61 77 (in Chinese) [范洪义, 李学超 2012 61 77]

    [16]

    Fan H Y, Hu L Y 2010 The Thermal Entanglement Entangled-State Representation of Open Quantum System (Shanghai: Shanghai Jiao Tong University Press) pp114-160 (in Chinese) [范洪义, 胡利云 2010 开放量子系统退相干的纠缠态表象论 (上海: 上海交通大学出版社) 第114页-160页]

    [17]

    Cong S 2014 Control of Quantum Systems: Theory and Methods (Wiley Press) pp73-96

    [18]

    Viola L, Lloyd S 1998 Phys. Rev. A 58 2733

    [19]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [20]

    Yu T, Eberly J H 2009 Science 323 5914

    [21]

    Kowalewska-Kudłaszyk A, Leoński W 2010 Physica Scripta T140 014051

  • [1] Zhang Zhi-Da, Yi Kang-Yuan, Chen Yuan-Zhen, Yan Fei. Dynamic decoupling for multi-level systems. Acta Physica Sinica, 2023, 72(10): 100305. doi: 10.7498/aps.72.20222398
    [2] Gong Long-Yan, Yang Hui, Zhao Sheng-Mei. Influence of intermediated measurements on quantum statistical complexity of single driven qubit. Acta Physica Sinica, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [3] Bai Xu-Fang, Chen Lei. Magnetopolaron-state lifetime and qubit decoherence in donor-center quantum dots with the electromagnetic field. Acta Physica Sinica, 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [4] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [5] Li Lu-Si, Li Hong-Hui, Zhou Li-Li, Yang Zhi-Sheng, Ai Qing. Measurement of weak static magnetic field with nitrogen-vacancy color center. Acta Physica Sinica, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [6] Ren Yi-Chong, Fan Hong-Yi. Supersymmetry of the solution to the master equation between two-level atom and laser channel. Acta Physica Sinica, 2016, 65(3): 030301. doi: 10.7498/aps.65.030301
    [7] Chang Feng, Wang Xiao-Qian, Gai Yong-Jie, Yan Dong, Song Li-Jun. Quantum Fisher information and spin squeezing in the interaction system of light and matter. Acta Physica Sinica, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [8] Fan Hong-Yi, He Rui. Quantum dissipation of the density matrix of mesoscopic RLC circuit. Acta Physica Sinica, 2014, 63(11): 110301. doi: 10.7498/aps.63.110301
    [9] Dang Wen-Jia, Zeng Xiao-Dong, Feng Zhe-Jun. Decoherence effect of target roughness in synthetic aperture ladar. Acta Physica Sinica, 2013, 62(2): 024204. doi: 10.7498/aps.62.024204
    [10] Zhang Hao-Liang, Jia Fang, Xu Xue-Xiang, Guo Qin, Tao Xiang-Yang, Hu Li-Yun. Decoherence of a photon-subtraction-addition coherent state in a thermal environment. Acta Physica Sinica, 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [11] Zhao Hu, Li Tie-Fu, Liu Jian-She, Chen Wei. Progress of electromagnetically induced transparency based on superconducting qubits. Acta Physica Sinica, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [12] Zhao Wen-Lei, Wang Jian-Zhong, Dou Fu-Quan. Decoherence by a classically small influence. Acta Physica Sinica, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [13] Zhou Jun, Yuan Hao, Song Jun. The time evolution of relative density operator in phase diffusion channels. Acta Physica Sinica, 2012, 61(3): 030302. doi: 10.7498/aps.61.030302
    [14] Shi Zhen-Gang, Wen Wei, Chen Xiong-Wen, Xiang Shao-Hua, Song Ke-Hui. Shot noise spectrum of a double quantum dot charge qubit. Acta Physica Sinica, 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [15] Ye Bin, Xu Wen-Bo, Gu Bin-Jie. Robust quantum computation of the quantum kicked Harper model and dissipative decoherence. Acta Physica Sinica, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [16] Liu Shao-Ding, Cheng Mu-Tian, Zhou Hui-Jun, Li Yao-Yi, Wang Qu-Quan, Xue Qi-Kun. The effect of biexciton, wetting layer leakage and Auger capture on Rabi oscillation damping in quantum dots. Acta Physica Sinica, 2006, 55(5): 2122-2127. doi: 10.7498/aps.55.2122
    [17] Wu Jun-Lin, Huang Xin-Min. Generalized master equation for the nonextensive reaction-diffusion systems. Acta Physica Sinica, 2006, 55(12): 6234-6237. doi: 10.7498/aps.55.6234
    [18] Wang Li, Hu Xiang-Ming. Coupling field linewidth: inhibiting electromagnetically induced absorption. Acta Physica Sinica, 2004, 53(8): 2551-2555. doi: 10.7498/aps.53.2551
    [19] Liu Yan-Xin, Wang Yong-Chang, Du Shao-Yi. The study of I-V characteristics of single-electron triple-barrier tunnel-junction. Acta Physica Sinica, 2004, 53(8): 2734-2740. doi: 10.7498/aps.53.2734
    [20] Deng Wen-Ji. . Acta Physica Sinica, 2002, 51(6): 1171-1174. doi: 10.7498/aps.51.1171
Metrics
  • Abstract views:  6716
  • PDF Downloads:  423
  • Cited By: 0
Publishing process
  • Received Date:  30 November 2015
  • Accepted Date:  29 February 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map