-
Thermal effect in the gain fiber is one of the main factors which restrict the power improvement of high power fiber amplifiers. Previous studies have shown that the temperature distribution is closely related to the doping concentration along the gain fiber. In order to reduce the maximum temperature of the gain fiber, we propose to use doping concentration varying along the gain fiber as a method to disperse the thermal effect of the fiber laser and improve the laser output power. Based on the rate equation model and thermal conduction model, the thermal distributions and output powers of several different gradient doping gain fibers are simulated in the cases where the output powers are approximately the same. Our study shows that compared with the conventional constant doping gain fiber, linear doping of the rare earth ion along the gain fiber can reduce the maximum temperature of the gain fiber as well as the temperature of the fusion point greatly, thus improving the stabilities of the fusion point and the fiber laser amplifier. In the case of cosinoidal doping, the gain fiber can not only reduce the temperature of the fusion point but also make the temperature have a periodic distribution along the gain fiber, which can suppress the stimulated Brillouin scattering effect effectively. The exponential doping of the gain fiber can also reduce the maximum temperature and the temperature of the fusion point, which is beneficial to the further scaling of the fiber laser output power. At the same time, it can make the gain of the signal light have a uniform distribution along the gain fiber, which suppresses the mode instability effect and improves the output beam quality of the fiber laser. These conclusions also hold true when the pump power changes. Therefore, the gradient doping of the gain fiber proposed in this paper can optimize the temperature distribution along the fiber and improve the stability of the fusion point. Besides, it can improve the beam quality of the output laser and suppress the nonlinear effect and mode instability effect. The results indicate that the gradient doping of the gain fiber is an effective and feasible way to improve the output power of fiber amplifier. Last but not the least, it is possible to produce the gradient doping gain fiber by the laser heated pedestal growth method and the direct nanoparticle deposition technique. The investigation can present a reference for designing the gain fiber in high-power fiber laser systems.
-
Keywords:
- fiber laser /
- gradient doping /
- thermal effect /
- temperature distribution
[1] Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63
[2] Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554
[3] Limpert J, Roser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tiinnermann A 2007 IEEE J. Sel. Top. Quant. 13 537
[4] Huang X J, Liu Y Z, Sui Z, Li M Z, Chen H Y, Lin H H 2004 J. Appl. Opt. 6 16 (in Chinese) [黄绣江, 刘永智, 隋展, 李明中, 陈海燕, 林宏奂 2004 应用光学 6 16]
[5] Cui L, Zhang Y C, He D Y, Li X Y, Jiang J M 2012 Journal of Lasers 36 154 (in Chinese) [崔丽, 张彦超, 贺定勇, 李晓延, 蒋建敏 2012 激光技术 36 154]
[6] Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 219
[7] Zhang S, Wang X 2013 Opt. Commun. 295 155
[8] Fan Y, He B, Zhou J, Zheng J, Liu H, Wei Y, Dong J, Lou Q 2011 Opt. Express 19 15162
[9] Lapointe M, Chatigny S, Pich M, Cain-Skaff M, Maran J 2009 SPIE LASE Lasers and Applications in Science and Engineering, Quebc, Canada, February 19, 2009 p71951U
[10] Chen Z L, Hou J, Jiang Z F 2007 Journal of Lasers 31 544 (in Chinese) [陈子伦, 侯静,姜宗福 2007 激光技术 31 544]
[11] Xiao H 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [肖虎 2012 博士学位论文(长沙: 国防科学技术大学)]
[12] Chang Y M, Yao T, Jeong H, Ji J, Yoo S, May-Smith T C, Sahu J K, Nilsson J 2014 Conference on Lasers and Electro-Optics(CLEO) San Jose, California, United States June 8-13, 2014 p1
[13] Xiong Y 2006 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese) [熊悦 2006 硕士学位论文(成都: 西南交通大学)]
[14] Huang Y H, Huang L, Zhang H T, Liu Q, Yan P, Gong M L 2009 Journal of Lasers 33 225 (in Chinese) [黄云火, 黄磊, 张海涛, 柳强, 闫平, 巩马理 2009 激光技术 33 225]
[15] Ye B Y 2014 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese) [叶宝圆 2014 硕士学位论文(武汉: 华中科技大学)]
[16] Elahi P, Yilmaz S, Akcaalan O, Kalaycioglu H, Oktem B, Senel C, Ilday F O, Eken K 2012 Opt. Lett. 37 3042
[17] Liu A 2007 Opt. Express 15 977
[18] Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407
[19] Laversenne L, Goutaudier C, Guyot Y, Cohen-Adad M T, Boulon G 2002 J. Alloy. Compd. 341 214
[20] Boulon G, Laversenne L, Goutaudier C, Guyot Y, Cohen-Adad M T 2003 J. Lumin. 102 417
[21] Tammela S, Serlund M, Koponen J, Philippov V, Stenius P 2006 Integrated Optoelectronic Devices San Jose, California, United states January 21, 2006 p61160G
[22] Liao S Y, Gong M L 2007 Laser Opt. Prog. 44 27 (in Chinese) [廖素英,巩马理 2007 激光与光电子学进展 44 27]
[23] Kelson I, Hardy A 1998 IEEE J. Quantum Elect. 34 1570
[24] Kelson I, Hardy A 1999 J. Lightwave Technol. 17 891
[25] Wang X, Tao R, Zhang H, Zhou P, Xu X 2014 Chinese Laser 11 119 (in Chinese) [王小林,陶汝茂,张汉伟,周朴,许晓军 2014 中国激光 11 119]
[26] Brown D C, Hoffman H J 2001 IEEE J. Quantum Elect. 37 207
[27] Smith A V, Smith J 2013 Opt. Express 21 2606
[28] Kirchhof J, Unger S, Schwuchow A, Jetschke S, Knappe B 2005 Integrated Optoelectronic Devices San Jose, California, United States, January 22, 2005 p261
[29] www.nufern.com/[2016-2-3]
[30] Jeong Y, Nilsson J, Sahu J K, Payne D N, Horley R, Hickey L M B, Turner P W 2007 IEEE J. Quantum Elect. 13 546
[31] Brar K, Savage-Leuchs M, Henrie J, Courtney S, Dilley C, Afzal R, Honea E 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, San Francisco, California, United States, February 01, 2014 p89611R
[32] Tao R M, Wang X L, Xiao H, Zhou P, Liu Z J 2014 Acta Opt. Sin. 34 134 (in Chinese) [陶汝茂,王小林,肖虎,周朴,刘泽金 2014 光学学报 34 134]
-
[1] Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63
[2] Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554
[3] Limpert J, Roser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tiinnermann A 2007 IEEE J. Sel. Top. Quant. 13 537
[4] Huang X J, Liu Y Z, Sui Z, Li M Z, Chen H Y, Lin H H 2004 J. Appl. Opt. 6 16 (in Chinese) [黄绣江, 刘永智, 隋展, 李明中, 陈海燕, 林宏奂 2004 应用光学 6 16]
[5] Cui L, Zhang Y C, He D Y, Li X Y, Jiang J M 2012 Journal of Lasers 36 154 (in Chinese) [崔丽, 张彦超, 贺定勇, 李晓延, 蒋建敏 2012 激光技术 36 154]
[6] Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 219
[7] Zhang S, Wang X 2013 Opt. Commun. 295 155
[8] Fan Y, He B, Zhou J, Zheng J, Liu H, Wei Y, Dong J, Lou Q 2011 Opt. Express 19 15162
[9] Lapointe M, Chatigny S, Pich M, Cain-Skaff M, Maran J 2009 SPIE LASE Lasers and Applications in Science and Engineering, Quebc, Canada, February 19, 2009 p71951U
[10] Chen Z L, Hou J, Jiang Z F 2007 Journal of Lasers 31 544 (in Chinese) [陈子伦, 侯静,姜宗福 2007 激光技术 31 544]
[11] Xiao H 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [肖虎 2012 博士学位论文(长沙: 国防科学技术大学)]
[12] Chang Y M, Yao T, Jeong H, Ji J, Yoo S, May-Smith T C, Sahu J K, Nilsson J 2014 Conference on Lasers and Electro-Optics(CLEO) San Jose, California, United States June 8-13, 2014 p1
[13] Xiong Y 2006 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese) [熊悦 2006 硕士学位论文(成都: 西南交通大学)]
[14] Huang Y H, Huang L, Zhang H T, Liu Q, Yan P, Gong M L 2009 Journal of Lasers 33 225 (in Chinese) [黄云火, 黄磊, 张海涛, 柳强, 闫平, 巩马理 2009 激光技术 33 225]
[15] Ye B Y 2014 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese) [叶宝圆 2014 硕士学位论文(武汉: 华中科技大学)]
[16] Elahi P, Yilmaz S, Akcaalan O, Kalaycioglu H, Oktem B, Senel C, Ilday F O, Eken K 2012 Opt. Lett. 37 3042
[17] Liu A 2007 Opt. Express 15 977
[18] Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407
[19] Laversenne L, Goutaudier C, Guyot Y, Cohen-Adad M T, Boulon G 2002 J. Alloy. Compd. 341 214
[20] Boulon G, Laversenne L, Goutaudier C, Guyot Y, Cohen-Adad M T 2003 J. Lumin. 102 417
[21] Tammela S, Serlund M, Koponen J, Philippov V, Stenius P 2006 Integrated Optoelectronic Devices San Jose, California, United states January 21, 2006 p61160G
[22] Liao S Y, Gong M L 2007 Laser Opt. Prog. 44 27 (in Chinese) [廖素英,巩马理 2007 激光与光电子学进展 44 27]
[23] Kelson I, Hardy A 1998 IEEE J. Quantum Elect. 34 1570
[24] Kelson I, Hardy A 1999 J. Lightwave Technol. 17 891
[25] Wang X, Tao R, Zhang H, Zhou P, Xu X 2014 Chinese Laser 11 119 (in Chinese) [王小林,陶汝茂,张汉伟,周朴,许晓军 2014 中国激光 11 119]
[26] Brown D C, Hoffman H J 2001 IEEE J. Quantum Elect. 37 207
[27] Smith A V, Smith J 2013 Opt. Express 21 2606
[28] Kirchhof J, Unger S, Schwuchow A, Jetschke S, Knappe B 2005 Integrated Optoelectronic Devices San Jose, California, United States, January 22, 2005 p261
[29] www.nufern.com/[2016-2-3]
[30] Jeong Y, Nilsson J, Sahu J K, Payne D N, Horley R, Hickey L M B, Turner P W 2007 IEEE J. Quantum Elect. 13 546
[31] Brar K, Savage-Leuchs M, Henrie J, Courtney S, Dilley C, Afzal R, Honea E 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, San Francisco, California, United States, February 01, 2014 p89611R
[32] Tao R M, Wang X L, Xiao H, Zhou P, Liu Z J 2014 Acta Opt. Sin. 34 134 (in Chinese) [陶汝茂,王小林,肖虎,周朴,刘泽金 2014 光学学报 34 134]
Catalog
Metrics
- Abstract views: 6300
- PDF Downloads: 249
- Cited By: 0