Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Illumination and temperature analysis for CE-5 candidate landing site Mons Rümker

Zhong Zhen Zhang Teng Zhang Jie Chen Shi-Guo

Citation:

Illumination and temperature analysis for CE-5 candidate landing site Mons Rümker

Zhong Zhen, Zhang Teng, Zhang Jie, Chen Shi-Guo
PDF
HTML
Get Citation
  • The forthcoming lunar exploration of Chang’e-5 (CE-5) mission will be the first sampling return project of China. The actual drilling needs the information about real-time illumination and corresponding temperature. To give a support for the project, in this paper the SPICE software system is first used to calculate the real-time illumination at the CE-5 candidate landing site Mons Rümker. It is found that our synthetic map of illumination is consistent with the morning map of illumination provided by the Japan’s SELENE satellite. This result verifies the rationality of our algorithm and the corresponding code. According to the calculated illumination and considering a one-dimensional heat conduction model, we study the temperature distribution over Mons Rümker. It is found that the regolith temperature near the surface is greatly related to the illumination, but varies a little with the depth increasing. It is also discovered that the regolith temperature beneath a depth of 0.57 m will not change any more. To give a support for the actual drilling program, it is recommended to consider the temperature difference between the outside and inside of the regolith, especially their stresses caused by such a temperature difference. Moreover, considering the drilling depth of CE-5 larger than 0.57 m, it is likely to measure the heat flow for the constant-temperature layer. We propose that for the next lunar exploration following CE-5 the measurement of heat flow is considered. This will promote the research of lunar science.
      Corresponding author: Zhong Zhen, zzhong@gznu.edu.cn
    [1]

    欧阳自远, 李春来, 邹永廖等 2010 中国科学·地球科学 40 261

    Ouyang Z Y, Li C L, Zou Y L, et al. 2010 Sci. China Earth Sci. 40 261

    [2]

    于登云, 吴学英, 吴伟仁 2016 深空探测学报 3 307

    Yu D Y, Wu X Y, Wu W R 2016 J. Deep Space Explor. 3 307

    [3]

    赵健楠, 肖龙, 乔乐, Glotch T D, 黄倩 2017 矿物岩石地球化学通报 36 1156

    Zhao J N, Xiao L, Qiao L, Glotch T D, Huang Q 2017 Bull. Miner. Petrol. Geochem. 36 1156

    [4]

    Zhang T, Ding X 2017 Acta Astronaut. 131 190Google Scholar

    [5]

    Qian Y Q, Xiao L, Zhao S Y, Huang J, Flahaut J, Martinot M, Head J W, Hiesinger H, Wang G X 2018 J. Geophys. Res. Planet. 123 1407

    [6]

    Geologic map of the Rumker quadrangle of the Moon, Scott D H, Eggleton R E https://pubs.er.usgs.gov/publication/i805/[2020-02-18]

    [7]

    Smith E I 1973 Moon 6 3Google Scholar

    [8]

    Smith E I 1974 Moon 10 175Google Scholar

    [9]

    Spudis P D, McGovern P J, Kiefer W S 2013 J. Geophys. Res. Planet. 118 1063Google Scholar

    [10]

    Zhao J N, Xiao L, Qiao L, Glotch T D, Huang Q 2017 J. Geophys. Res. Planet. 122 1419Google Scholar

    [11]

    Hao W F, Zhu C, Li F, Yan J G, Ye M, Barriot J P 2019 Planet. Space Sci. 168 73Google Scholar

    [12]

    Paige D A, Siegler M A, Zhang J A, et al. 2010 Science 330 479Google Scholar

    [13]

    Vasavada A R, Bandfield J L, Greenhagen B T, Hayne P O, Siegler M A, Williams J P, Paige D A 2012 J. Geophys. Res. 117 E00H18-1

    [14]

    Hayne P O, Bandfield J L, Siegler M A, Vasavada A R, Ghent R R, Williams J P, Greenhagen B T, Aharonson O, Elder C M, Lucey P G, Paige D A 2017 J. Geophys. Res. Planet. 122 2371Google Scholar

    [15]

    Woods-Robinson R, Siegler M A, Paige D A 2019 J. Geophys. Res. Planet. 124 1989Google Scholar

    [16]

    Acton Jr C H A 1996 Planet. Space Sci. 44 65Google Scholar

    [17]

    Smith D E, Zuber M T, Neumann G A, et al. 2010 Geophys. Res. Lett. 37 L18204-1

    [18]

    Smith D E, Zuber M T, Neumann G A, et al. 2017 Icarus 283 70Google Scholar

    [19]

    Mitchell D L, and De Pater I 1994 Icarus 110 2Google Scholar

    [20]

    Ledlow M J, Burns J O, Gisler G R, Zhao J H, Zeilik M, Baker D N 1992 Astrophys. J. 384 640Google Scholar

    [21]

    Hemingway B S, Krupka K M, Robie R A 1981 Am. Mineral. 66 1202

    [22]

    Langseth M G, Keihm S J, Peters K 1976 Proceedings of the 7 th International Symposium on Lunar and Planetary Science Texas, United States of America, March 15–19, 1976 p3143

    [23]

    Bandfield J L, Hayne P O, Williams J P, Greenhagen B T, Paige D A 2015 Icarus 248 357Google Scholar

    [24]

    Keihm S J 1984 Icarus 60 568Google Scholar

    [25]

    Kopp G, Lean J L 2011 Geophys. Res. Lett. 38 541

    [26]

    Braun J E, Mitchell J C 1983 Sol. Energy 31 439Google Scholar

    [27]

    Warren P H, Rasmussen 1987 J. Geophys. Res. Space Phys. 92 3453Google Scholar

  • 图 1  Mons Rümker区域地形图, 如白色方框所示, 其中黑色方块表示文献[10]建议的“嫦娥5号”登陆点(303.34ºE, 40.11ºN)

    Figure 1.  Topography around Mons Rümker region, which is figured out with a white box. The black box indicates the candidate landing site of CE-5 proposed by reference [10], and this site is centered at (303.34ºE, 40.11ºN)

    图 2  太阳光照条件示意图

    Figure 2.  Schematic of illumination condition

    图 3  Mons Rümker区域早晨光照图, 对应月球地方时tm = 06:30:30 (a)日本SELENE卫星提供的早晨光照图; (b)本文计算的与图3(a)相同时刻的实时光照图

    Figure 3.  Morning map of illumination over Mons Rümker at the lunar local time tm = 06:30:30: (a) Japan’s SELENE morning map of illumination; (b) our estimated relative intensity of illumination at the same time of Fig. 3(a)

    图 4  Mons Rümker区域表面温度分布图 (a)对应时刻为UTC 2020-10-28T 11:30:00; (b)对应时刻为UTC 2020-10-29T 06:45:00; (c)对应时刻为UTC 2020-10-30T 06:45:00; (d)对应时刻为UTC 2020-11-02T 04:45:00; (e)对应时刻为UTC 2020-11-12T 02:45:00; (f)对应时刻为UTC 2020-11-12T 17:00:00

    Figure 4.  Surface temperature distribution with time over Mons Rümker plateau: (a) Time at UTC 2020-10-28T 11:30:00; (b) time at UTC 2020-10-29T 06:45:00; (c) time at UTC 2020-10-30T 06:45:00; (d) time at UTC 2020-11-02T 04:45:00; (e) time at UTC 2020-11-12T 02:45:00; (f) time at UTC 2020-11-12T 17:00:00

    图 5  Mons Rümker区域底部5 cm深度的温度分布图 (a)对应时刻为UTC 2020-10-28T 11:30:00; (b)对应时刻为UTC 2020-10-29T 06:45:00; (c)对应时刻为UTC 2020-10-30T 06:45:00; (d)对应时刻为UTC 2020-11-02T 04:45:00; (e)对应时刻为UTC 2020-11-12T 02:45:00; (f)对应时刻为UTC 2020-11-12T 17:00:00

    Figure 5.  Subsurface temperature distribution at the depth of 5 cm over Mons Rümker plateau: (a) Time at UTC 2020-10-28T 11:30:00; (b) time at UTC 2020-10-29T 06:45:00; (c) time at UTC 2020-10-30T 06:45:00; (d) time at UTC 2020-11-02T 04:45:00; (e) time at UTC 2020-11-12T 02:45:00; (f) time at UTC 2020-11-12T 17:00:00

    图 6  剖面温度沿图1所示经度方向的分布 (a)对应时刻为UTC 2020-10-28T 11:30:00; (b)对应时刻为UTC 2020-10-29T 06:45:00; (c)对应时刻为UTC 2020-10-30T 06:45:00; (d)对应时刻为UTC 2020-11-02T 04:45:00; (e)对应时刻为UTC 2020-11-12T 02:45:00; (f)对应时刻为UTC 2020-11-12T 17:00:00. 图6(d)所示黑色曲线表示图1蓝线方向的表面地形轮廓

    Figure 6.  Temperature variation along the longitude direction shown in Fig.1: (a) Time at UTC 2020-10-28T 11:30:00; (b) time at UTC 2020-10-29T 06:45:00; (c) time at UTC 2020-10-30T 06:45:00; (d) time at UTC 2020-11-02T 04:45:00; (e) time at UTC 2020-11-12T 02:45:00; (f) time at UTC 2020-11-12T 17:00:00. The black carves in Fig. 6(d) represents the surface topography along the same blue line direction displayed in Fig. 1

    图 7  底部温度随时间的变化 (a)“嫦娥5号”候选登陆点的底部分温度变化; (b)图1中黑色五角星所示参考点的底部温度变化

    Figure 7.  Subsurface temperature variations: (a) Variations for the point of CE-5 candidate landing site; (b) variations for the black star in Fig. 1

    图 8  参考点(图1中黑色五角星)温度随深度的变化 (a)对应月球地方时tm = 06:30:30; (b)对应月球地方时tm = 12:30:30; (c)对应月球地方时tm = 18:30:30

    Figure 8.  Subsurface temperature variations with depth for the point of black star in Fig. 1: (a) Temperature variations at the lunar local time tm = 06:30:30; (b) temperature variations at the lunar local time tm = 12:30:30; (c) temperature variations at the lunar local time tm = 18:30:30

    表 1  相关参数取值

    Table 1.  Values of parameters used in study

    序号参数取值
    1密度ρsρd [14]ρs = 1100 kg·m–3, ρd = 1800 kg·m–3
    2热传导系数kskd [14]ks = 7.4 × 10–4 W·m–1·K–1, kd = 3.4 × 10–3 W·m–1·K–1
    3比热容拟合系数[14] c0, c1, c2, c3, c4c0 = –3.6125 J·kg–1·K–1, c1 = 2.7431 J·kg–1·K–2,
    c2 = 2.3616 × 10–3 J·kg–1·K–3,
    c3 = –1.234 × 10–5 J·kg–1·K–4,
    c4 = 8.9093 × 10–9 J·kg–1·K–5
    4参数Hx [13,14]H = 0.06 m, x = 2.7
    DownLoad: CSV

    表 2  参考点(图1中黑色五角星)温度(单位为K)在不同时刻随深度的变化

    Table 2.  Temperature (in K) variations with depth for the point of black star in Fig. 1 at various lunar local time

    深度/mtm = 06:30:30tm = 12:30:30tm = 18:30:30
    H = 0.02 mH = 0.09 mQ = 0.012 W·m–2Q = 0.021 W·m–2H = 0.02 mH = 0.09 mQ = 0.012 W·m–2Q = 0.021 W·m–2H = 0.02 mH = 0.09 mQ = 0.012 W·m–2Q = 0.021 W·m–2
    0170.0169.6169.7169.7348.1351.7350.9350.9122.3110.7112.9112.9
    0.0136158.5149.4152.3152.3322.5325.7324.4324.4213.6205.6207.1207.1
    0.0526192.4194.5194.4194.4270.6261.1263.2263.2260.9260.7260.1260.1
    0.1000221.3223.8223.2223.2237.9231.9233.6233.6260.3253.9255.3255.3
    0.1822239.3239.6239.5239.5234.0235.1234.7234.7243.0239.5240.4240.4
    0.3240241.2241.2241.2241.2240.8240.9240.8240.8240.0240.2240.1240.1
    0.4721241.2241.2241.2241.2241.3241.3241.3241.3241.2241.3241.3241.3
    0.8250242.4242.4242.4242.4242.4242.4242.4242.4242.4242.4242.4242.4
    1.0000242.9242.9242.7243.1242.9242.9242.7243.1242.9242.9242.7243.1
    DownLoad: CSV
    Baidu
  • [1]

    欧阳自远, 李春来, 邹永廖等 2010 中国科学·地球科学 40 261

    Ouyang Z Y, Li C L, Zou Y L, et al. 2010 Sci. China Earth Sci. 40 261

    [2]

    于登云, 吴学英, 吴伟仁 2016 深空探测学报 3 307

    Yu D Y, Wu X Y, Wu W R 2016 J. Deep Space Explor. 3 307

    [3]

    赵健楠, 肖龙, 乔乐, Glotch T D, 黄倩 2017 矿物岩石地球化学通报 36 1156

    Zhao J N, Xiao L, Qiao L, Glotch T D, Huang Q 2017 Bull. Miner. Petrol. Geochem. 36 1156

    [4]

    Zhang T, Ding X 2017 Acta Astronaut. 131 190Google Scholar

    [5]

    Qian Y Q, Xiao L, Zhao S Y, Huang J, Flahaut J, Martinot M, Head J W, Hiesinger H, Wang G X 2018 J. Geophys. Res. Planet. 123 1407

    [6]

    Geologic map of the Rumker quadrangle of the Moon, Scott D H, Eggleton R E https://pubs.er.usgs.gov/publication/i805/[2020-02-18]

    [7]

    Smith E I 1973 Moon 6 3Google Scholar

    [8]

    Smith E I 1974 Moon 10 175Google Scholar

    [9]

    Spudis P D, McGovern P J, Kiefer W S 2013 J. Geophys. Res. Planet. 118 1063Google Scholar

    [10]

    Zhao J N, Xiao L, Qiao L, Glotch T D, Huang Q 2017 J. Geophys. Res. Planet. 122 1419Google Scholar

    [11]

    Hao W F, Zhu C, Li F, Yan J G, Ye M, Barriot J P 2019 Planet. Space Sci. 168 73Google Scholar

    [12]

    Paige D A, Siegler M A, Zhang J A, et al. 2010 Science 330 479Google Scholar

    [13]

    Vasavada A R, Bandfield J L, Greenhagen B T, Hayne P O, Siegler M A, Williams J P, Paige D A 2012 J. Geophys. Res. 117 E00H18-1

    [14]

    Hayne P O, Bandfield J L, Siegler M A, Vasavada A R, Ghent R R, Williams J P, Greenhagen B T, Aharonson O, Elder C M, Lucey P G, Paige D A 2017 J. Geophys. Res. Planet. 122 2371Google Scholar

    [15]

    Woods-Robinson R, Siegler M A, Paige D A 2019 J. Geophys. Res. Planet. 124 1989Google Scholar

    [16]

    Acton Jr C H A 1996 Planet. Space Sci. 44 65Google Scholar

    [17]

    Smith D E, Zuber M T, Neumann G A, et al. 2010 Geophys. Res. Lett. 37 L18204-1

    [18]

    Smith D E, Zuber M T, Neumann G A, et al. 2017 Icarus 283 70Google Scholar

    [19]

    Mitchell D L, and De Pater I 1994 Icarus 110 2Google Scholar

    [20]

    Ledlow M J, Burns J O, Gisler G R, Zhao J H, Zeilik M, Baker D N 1992 Astrophys. J. 384 640Google Scholar

    [21]

    Hemingway B S, Krupka K M, Robie R A 1981 Am. Mineral. 66 1202

    [22]

    Langseth M G, Keihm S J, Peters K 1976 Proceedings of the 7 th International Symposium on Lunar and Planetary Science Texas, United States of America, March 15–19, 1976 p3143

    [23]

    Bandfield J L, Hayne P O, Williams J P, Greenhagen B T, Paige D A 2015 Icarus 248 357Google Scholar

    [24]

    Keihm S J 1984 Icarus 60 568Google Scholar

    [25]

    Kopp G, Lean J L 2011 Geophys. Res. Lett. 38 541

    [26]

    Braun J E, Mitchell J C 1983 Sol. Energy 31 439Google Scholar

    [27]

    Warren P H, Rasmussen 1987 J. Geophys. Res. Space Phys. 92 3453Google Scholar

  • [1] Chen Wei-Long, Guo Rong-Rong, Tong Yu-Shen, Liu Li-Li, Zhou Sheng-Lan, Lin Jin-Hai. Influence of sub-bandgap illumination on electric field distribution at grain boundary in CdZnTe crystals. Acta Physica Sinica, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [2] Wang Xue-Zhang, Li Ke-Qun. Liquid-cooled structure design and heat dissipation characteristics analysis of cross-flow channels for lithium batteries. Acta Physica Sinica, 2022, 71(18): 184702. doi: 10.7498/aps.71.20220212
    [3] Xiao Kai-Bo, Zheng Jian-Gang, Jiang Xin-Ying, Jiang Xue-Jun, Wu Wen-Long, Yan Xiong-Wei, Wang Zhen-Guo, Zheng Wan-Guo. Temperature characteristics of high repetition rate water-cooled Nd:YAG active mirror amplifier. Acta Physica Sinica, 2021, 70(3): 034203. doi: 10.7498/aps.70.20201042
    [4] Liu Chen, Sun Hong-Xiang, Yuan Shou-Qi, Xia Jian-Ping. Broadband acoustic focusing effect based on temperature gradient distribution. Acta Physica Sinica, 2016, 65(4): 044303. doi: 10.7498/aps.65.044303
    [5] Zhou Zi-Chao, Wang Xiao-Lin, Tao Ru-Mao, Zhang Han-Wei, Su Rong-Tao, Zhou Pu, Xu Xiao-Jun. Theoretical study of the temperature distribution in high power gain fiber of gradient doping. Acta Physica Sinica, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [6] Li Ce, Feng Guo-Ying, Yang Huo-Mu. The analytic expressions of temperature and stress in directly liquid cooled thin slab laser. Acta Physica Sinica, 2016, 65(5): 054204. doi: 10.7498/aps.65.054204
    [7] Xu Jun, Chen Gang. Influence of annealing temperature on the distribution of particle sizes of quantum dots doped glass. Acta Physica Sinica, 2015, 64(12): 127302. doi: 10.7498/aps.64.127302
    [8] Li Pu, Jiang Lei, Sun Yuan-Yuan, Zhang Jian-Guo, Wang Yun-Cai. Study on real-time optical sampling of chaotic laser for all-optical physical random number generator. Acta Physica Sinica, 2015, 64(23): 230502. doi: 10.7498/aps.64.230502
    [9] Shi Hong, Tian Li-Cheng, Yang Sheng-Sheng. Analysis of data obtained by the solar wind ion detector onboard the Chang’E-1 Lunar orbiter. Acta Physica Sinica, 2014, 63(6): 069601. doi: 10.7498/aps.63.069601
    [10] Tang Yi-Wei, Jia Ming, Cheng Yun, Zhang Kai, Zhang Hong-Liang, Li Jie. Estimation of temperature distribution of the polymer lithium ion power battery based on the coupling relationship between electrochemistry and heat. Acta Physica Sinica, 2013, 62(15): 158201. doi: 10.7498/aps.62.158201
    [11] Chen Huan-Ting, Lü Yi-Jun, Gao Yu-Lin, Chen Zhong, Zhuang Rong-Rong, Zhou Xiao-Fang, Zhou Hai-Guang. The physical characteristic study on luminance uniformity and temperature for power GaN LEDs chip. Acta Physica Sinica, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [12] Wang Wen-Rui, Yu Jin-Long, Luo Jun, Han Bing-Chen, Wu Bo, Guo Jing-Zhong, Wang Ju, Yang En-Ze. High speed real-time optical sampling system based on optical parametric amplification. Acta Physica Sinica, 2011, 60(10): 104220. doi: 10.7498/aps.60.104220
    [13] Wang Zeng, Dong Gang, Yang Yin-Tang, Li Jian-Wei. Study on clock skew of unsymmetrical RLC interconnect tree with temperature distribution. Acta Physica Sinica, 2010, 59(8): 5646-5651. doi: 10.7498/aps.59.5646
    [14] Huang Sheng-Rong, Chen Chao. Analytical calculation of temperature distribution and thermal deformation during doping of Zn in GaN/Al2O3 material induced by nanosecond pulse-width laser. Acta Physica Sinica, 2007, 56(8): 4596-4601. doi: 10.7498/aps.56.4596
    [15] Tian Hong-Tao, Chen Chao. The analytical calculation of temperature distribution in doping processes of Zn/InP induced by continuous wave laser. Acta Physica Sinica, 2003, 52(2): 367-371. doi: 10.7498/aps.52.367
    [16] Cai Wei-Ying, Li Zhi-Feng, Lu Wei, Li Shou-Rong, Liang Ping-Zhi. Heat conduction investigations of the Si bridge in infrared emitter using micro- Raman scattering. Acta Physica Sinica, 2003, 52(11): 2923-2928. doi: 10.7498/aps.52.2923
    [17] Zheng Rui-Lun, Chen Hong, Liu Jun. . Acta Physica Sinica, 2002, 51(3): 554-558. doi: 10.7498/aps.51.554
    [18] LIU LI-YING, XU LEI, HOU ZHAN-JIA, XU ZHI-LING, CHEN JIE, WANG WEN-CHENG, LI FU-MING. SECOND-ORDER OPTICAL NONLINEARITY INVESTIGA-TION ON THE GELLING PROCESS OF ORGANIC-DOPED SILICA FILM. Acta Physica Sinica, 1999, 48(1): 69-73. doi: 10.7498/aps.48.69
    [19] LU YI, LIU SI-MIN, SHU HUA-DE, SUN QIAN, ZHANG GUANG-YIN, XU JING-JUN, LIU JUN-MIN. STUDIES OF THE REAL-TIME OPTICAL CORRELATION STORAGE IN LiNbO3:Fe Photorefractive Crystals. Acta Physica Sinica, 1994, 43(11): 1770-1775. doi: 10.7498/aps.43.1770
    [20] WU MEI-PING, ZHOU TAI-MING, CAI ZU-QUAN. A STUDY ON THE TEMPERATURE DISTRIBUTION IN HIGH-PRESSURE SODIUM ARC. Acta Physica Sinica, 1990, 39(10): 1583-1590. doi: 10.7498/aps.39.1583
Metrics
  • Abstract views:  7288
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2020
  • Accepted Date:  15 March 2020
  • Published Online:  05 June 2020

/

返回文章
返回
Baidu
map