-
为了研究端面抽运情况下,激光晶体在不同分布的抽运光抽运时热透镜球差的变化,通过对稳态热传导方程和Zernike多项式的求解,建立了热透镜球差与抽运光强度分布的模型,对模型进行了理论分析和仿真研究,并对仿真结果做了进一步理论和仿真分析.结果表明:在相同的抽运功率下,二阶超高斯分布抽运光抽运时球差最大,且随着抽运分布系数k的增大(除高斯分布外)球差逐渐减小;随着抽运功率的增加,抽运分布系数k对球差的影响逐渐加重,且不同分布系数k所产生的球差差距逐渐增大;并对二阶超高斯分布抽运光抽运得到最强激光功率的照射范围进行了理论分析和仿真分析,得知在相同抽运功率下,二阶超高斯分布抽运光得到最强激光功率的范围最宽为0.30–0.63 倍高斯半径.
-
关键词:
- 抽运分布 /
- 端泵 /
- 球差 /
- Zernike多项式
In order to study the spherical aberration of thermal lens when the laser crystal is pumped with the pump light distributed differently and the pump light under the end-pumping condition, in this paper we establish a single-ended pump and constant temperature thermal model to analyze the working characteristics of the Nd:YVO4 crystal. The steady state heat conduction equation and Zernike polynomials are solved, and the relationship between thermal spherical aberration and distribution of pump laser is established. The model is used in simulation, and the simulation results are further analyzed theoretically, showing that under the same pump power, the spherical aberration is greatest when the pump beam is of 2-order super-Gaussian distribution. The spherical aberration decreases with the increase of pump distribution coefficient k (except the Gaussian distribution). With the increase of pump power, the influence of pump distribution coefficient k on spherical aberration is aggravated gradually, and the difference in spherical aberration caused by different values of distribution coefficient k increases gradually. The range of strongest laser power of the 2-order super-Gaussian distribution pump is analyzed and simulated. Under same pump power, the maximum range of the strongest laser power of 2-order super-Gaussian distribution pump is 0.3-0.63 times the Gauss radius. The research methods and conclusions obtained in this paper have universal applicability and can be used for quantitatively analyzing the temperature distributions, thermal deformations, optical path difference distributions, and spherical aberration distributions of other laser crystals. At the same time, this study also provides a theoretical reference for improving spherical aberration from the perspective of changing the distribution of pump light and the laser output characteristics.-
Keywords:
- pump distribution /
- end-pumped /
- spherical aberration /
- Zernike polynomials
[1] Neubert B J, Eppich B 2005 Opt. Commun. 250 241
[2] Brickus D, Dementev A S 2016 Lith. J. Phys. 56 2
[3] Bonnefois A M, Gilbert M, Thro P Y, Weulerssse J M 2006 Opt. Commun. 259 223
[4] Liu C, Riesbeck T, Wang X, Ge J, Xiang Z 2008 Opt. Commun. 281 5222
[5] Song X L, Li B B, Guo Z, Wang S Y, Cai D F, Wen J G 2009 Opt. Commun. 282 4779
[6] Ji X L, Tao X Y, L B D 2004 Acta Phys. Sin. 53 952 (in Chinese)[季小玲, 陶向阳, 吕百达 2004 53 952]
[7] Liu C, Ge J H, Xiang Z, Chen J 2008 Acta Phys. Sin. 57 1704 (in Chinese)[刘崇, 葛剑虹, 项震, 陈军 2008 57 1704]
[8] Zhao Z G, Dong Y T, Pan S Q, Liu C, Ge J H, Xiang Z, Chen J, Mao Q M 2010 Chinese J. Lasers 37 2409 (in Chinese)[赵智刚, 董延涛, 潘孙强, 刘崇, 葛剑虹, 项震, 陈军, 毛谦敏 2010 中国激光 37 2409]
[9] Yaakov L, Inon M, Steven J, Avi M 2010 J. Opt. Soc. Am. B 27 1337
[10] Senatsky Y, Bisson J F, Shelobolin A, Shirakawa A, Ueda K 2009 Laser Phys. 19 911
[11] Shi P, Chen W, Li L, Gan A 2007 Appl. Opt. 46 4046
[12] Tereshchenko S A, Podgaetshii V M, Gerasimenko A Y, Savelev M S 2015 IEEE J. Quantum Elect. 45 315
[13] Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831
[14] Liu X W 2009 M. S. Thesis (Xian:Xidian University) (in Chinese)[刘学文 2009 硕士学位论文 (西安:西安电子科技大学)]
[15] Kwon Y K, Zhou F 2003 Opt. Eng. 42 1787
[16] Gerber M, Graf T 2003 IEEE J. Quantum Elect. 40 741
[17] Nadgaran H, Sabaian M 2006 Paramana J. Phys. 67 1119
[18] Gan A, Li L, Shi P, Chen W 2007 Appl. Opt. 46 4046
[19] We X Y, Yu X 1994 Acta Optica Sin. 14 718 (in Chinese)[魏学业, 俞信 1994 光学学报 14 718]
[20] Duan H F, Yang Z P, Wang S Q, Zhang Y D 2002 Chinese J. Lasers 29 517 (in Chinese)[段海峰, 杨泽平, 王淑青, 张雨东 2002 中国激光 29 517]
[21] Yao Q Q, Dong Y, Wang Q H, Jin G Y 2018 Appl. Opt. 57 2245
[22] Feng X X, Zhang L Y, Ye N, Yang B W 2012 Acta Optica Sin. 32 0512002 (in Chinese)[冯新星, 张丽艳, 叶南, 杨博文 2012 光学学报 32 0512002]
-
[1] Neubert B J, Eppich B 2005 Opt. Commun. 250 241
[2] Brickus D, Dementev A S 2016 Lith. J. Phys. 56 2
[3] Bonnefois A M, Gilbert M, Thro P Y, Weulerssse J M 2006 Opt. Commun. 259 223
[4] Liu C, Riesbeck T, Wang X, Ge J, Xiang Z 2008 Opt. Commun. 281 5222
[5] Song X L, Li B B, Guo Z, Wang S Y, Cai D F, Wen J G 2009 Opt. Commun. 282 4779
[6] Ji X L, Tao X Y, L B D 2004 Acta Phys. Sin. 53 952 (in Chinese)[季小玲, 陶向阳, 吕百达 2004 53 952]
[7] Liu C, Ge J H, Xiang Z, Chen J 2008 Acta Phys. Sin. 57 1704 (in Chinese)[刘崇, 葛剑虹, 项震, 陈军 2008 57 1704]
[8] Zhao Z G, Dong Y T, Pan S Q, Liu C, Ge J H, Xiang Z, Chen J, Mao Q M 2010 Chinese J. Lasers 37 2409 (in Chinese)[赵智刚, 董延涛, 潘孙强, 刘崇, 葛剑虹, 项震, 陈军, 毛谦敏 2010 中国激光 37 2409]
[9] Yaakov L, Inon M, Steven J, Avi M 2010 J. Opt. Soc. Am. B 27 1337
[10] Senatsky Y, Bisson J F, Shelobolin A, Shirakawa A, Ueda K 2009 Laser Phys. 19 911
[11] Shi P, Chen W, Li L, Gan A 2007 Appl. Opt. 46 4046
[12] Tereshchenko S A, Podgaetshii V M, Gerasimenko A Y, Savelev M S 2015 IEEE J. Quantum Elect. 45 315
[13] Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831
[14] Liu X W 2009 M. S. Thesis (Xian:Xidian University) (in Chinese)[刘学文 2009 硕士学位论文 (西安:西安电子科技大学)]
[15] Kwon Y K, Zhou F 2003 Opt. Eng. 42 1787
[16] Gerber M, Graf T 2003 IEEE J. Quantum Elect. 40 741
[17] Nadgaran H, Sabaian M 2006 Paramana J. Phys. 67 1119
[18] Gan A, Li L, Shi P, Chen W 2007 Appl. Opt. 46 4046
[19] We X Y, Yu X 1994 Acta Optica Sin. 14 718 (in Chinese)[魏学业, 俞信 1994 光学学报 14 718]
[20] Duan H F, Yang Z P, Wang S Q, Zhang Y D 2002 Chinese J. Lasers 29 517 (in Chinese)[段海峰, 杨泽平, 王淑青, 张雨东 2002 中国激光 29 517]
[21] Yao Q Q, Dong Y, Wang Q H, Jin G Y 2018 Appl. Opt. 57 2245
[22] Feng X X, Zhang L Y, Ye N, Yang B W 2012 Acta Optica Sin. 32 0512002 (in Chinese)[冯新星, 张丽艳, 叶南, 杨博文 2012 光学学报 32 0512002]
计量
- 文章访问数: 5746
- PDF下载量: 83
- 被引次数: 0