搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数值模拟抽运分布对端泵激光器晶体热透镜球差的影响

姚强强 王启晗 冯池 陈思 金光勇 董渊

引用本文:
Citation:

数值模拟抽运分布对端泵激光器晶体热透镜球差的影响

姚强强, 王启晗, 冯池, 陈思, 金光勇, 董渊

Numerical simulation of effect of pump distribution on spherical aberration of end-pumped laser

Yao Qiang-Qiang, Wang Qi-Han, Feng Chi, Chen Si, Jin Guang-Yong, Dong Yuan
PDF
导出引用
  • 为了研究端面抽运情况下,激光晶体在不同分布的抽运光抽运时热透镜球差的变化,通过对稳态热传导方程和Zernike多项式的求解,建立了热透镜球差与抽运光强度分布的模型,对模型进行了理论分析和仿真研究,并对仿真结果做了进一步理论和仿真分析.结果表明:在相同的抽运功率下,二阶超高斯分布抽运光抽运时球差最大,且随着抽运分布系数k的增大(除高斯分布外)球差逐渐减小;随着抽运功率的增加,抽运分布系数k对球差的影响逐渐加重,且不同分布系数k所产生的球差差距逐渐增大;并对二阶超高斯分布抽运光抽运得到最强激光功率的照射范围进行了理论分析和仿真分析,得知在相同抽运功率下,二阶超高斯分布抽运光得到最强激光功率的范围最宽为0.30–0.63 倍高斯半径.
    In order to study the spherical aberration of thermal lens when the laser crystal is pumped with the pump light distributed differently and the pump light under the end-pumping condition, in this paper we establish a single-ended pump and constant temperature thermal model to analyze the working characteristics of the Nd:YVO4 crystal. The steady state heat conduction equation and Zernike polynomials are solved, and the relationship between thermal spherical aberration and distribution of pump laser is established. The model is used in simulation, and the simulation results are further analyzed theoretically, showing that under the same pump power, the spherical aberration is greatest when the pump beam is of 2-order super-Gaussian distribution. The spherical aberration decreases with the increase of pump distribution coefficient k (except the Gaussian distribution). With the increase of pump power, the influence of pump distribution coefficient k on spherical aberration is aggravated gradually, and the difference in spherical aberration caused by different values of distribution coefficient k increases gradually. The range of strongest laser power of the 2-order super-Gaussian distribution pump is analyzed and simulated. Under same pump power, the maximum range of the strongest laser power of 2-order super-Gaussian distribution pump is 0.3-0.63 times the Gauss radius. The research methods and conclusions obtained in this paper have universal applicability and can be used for quantitatively analyzing the temperature distributions, thermal deformations, optical path difference distributions, and spherical aberration distributions of other laser crystals. At the same time, this study also provides a theoretical reference for improving spherical aberration from the perspective of changing the distribution of pump light and the laser output characteristics.
      通信作者: 董渊, laser_dongyuan@163.com
    • 基金项目: 国家自然科学基金(批准号:61505012)资助的课题.
      Corresponding author: Dong Yuan, laser_dongyuan@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505012).
    [1]

    Neubert B J, Eppich B 2005 Opt. Commun. 250 241

    [2]

    Brickus D, Dementev A S 2016 Lith. J. Phys. 56 2

    [3]

    Bonnefois A M, Gilbert M, Thro P Y, Weulerssse J M 2006 Opt. Commun. 259 223

    [4]

    Liu C, Riesbeck T, Wang X, Ge J, Xiang Z 2008 Opt. Commun. 281 5222

    [5]

    Song X L, Li B B, Guo Z, Wang S Y, Cai D F, Wen J G 2009 Opt. Commun. 282 4779

    [6]

    Ji X L, Tao X Y, L B D 2004 Acta Phys. Sin. 53 952 (in Chinese)[季小玲, 陶向阳, 吕百达 2004 53 952]

    [7]

    Liu C, Ge J H, Xiang Z, Chen J 2008 Acta Phys. Sin. 57 1704 (in Chinese)[刘崇, 葛剑虹, 项震, 陈军 2008 57 1704]

    [8]

    Zhao Z G, Dong Y T, Pan S Q, Liu C, Ge J H, Xiang Z, Chen J, Mao Q M 2010 Chinese J. Lasers 37 2409 (in Chinese)[赵智刚, 董延涛, 潘孙强, 刘崇, 葛剑虹, 项震, 陈军, 毛谦敏 2010 中国激光 37 2409]

    [9]

    Yaakov L, Inon M, Steven J, Avi M 2010 J. Opt. Soc. Am. B 27 1337

    [10]

    Senatsky Y, Bisson J F, Shelobolin A, Shirakawa A, Ueda K 2009 Laser Phys. 19 911

    [11]

    Shi P, Chen W, Li L, Gan A 2007 Appl. Opt. 46 4046

    [12]

    Tereshchenko S A, Podgaetshii V M, Gerasimenko A Y, Savelev M S 2015 IEEE J. Quantum Elect. 45 315

    [13]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831

    [14]

    Liu X W 2009 M. S. Thesis (Xian:Xidian University) (in Chinese)[刘学文 2009 硕士学位论文 (西安:西安电子科技大学)]

    [15]

    Kwon Y K, Zhou F 2003 Opt. Eng. 42 1787

    [16]

    Gerber M, Graf T 2003 IEEE J. Quantum Elect. 40 741

    [17]

    Nadgaran H, Sabaian M 2006 Paramana J. Phys. 67 1119

    [18]

    Gan A, Li L, Shi P, Chen W 2007 Appl. Opt. 46 4046

    [19]

    We X Y, Yu X 1994 Acta Optica Sin. 14 718 (in Chinese)[魏学业, 俞信 1994 光学学报 14 718]

    [20]

    Duan H F, Yang Z P, Wang S Q, Zhang Y D 2002 Chinese J. Lasers 29 517 (in Chinese)[段海峰, 杨泽平, 王淑青, 张雨东 2002 中国激光 29 517]

    [21]

    Yao Q Q, Dong Y, Wang Q H, Jin G Y 2018 Appl. Opt. 57 2245

    [22]

    Feng X X, Zhang L Y, Ye N, Yang B W 2012 Acta Optica Sin. 32 0512002 (in Chinese)[冯新星, 张丽艳, 叶南, 杨博文 2012 光学学报 32 0512002]

  • [1]

    Neubert B J, Eppich B 2005 Opt. Commun. 250 241

    [2]

    Brickus D, Dementev A S 2016 Lith. J. Phys. 56 2

    [3]

    Bonnefois A M, Gilbert M, Thro P Y, Weulerssse J M 2006 Opt. Commun. 259 223

    [4]

    Liu C, Riesbeck T, Wang X, Ge J, Xiang Z 2008 Opt. Commun. 281 5222

    [5]

    Song X L, Li B B, Guo Z, Wang S Y, Cai D F, Wen J G 2009 Opt. Commun. 282 4779

    [6]

    Ji X L, Tao X Y, L B D 2004 Acta Phys. Sin. 53 952 (in Chinese)[季小玲, 陶向阳, 吕百达 2004 53 952]

    [7]

    Liu C, Ge J H, Xiang Z, Chen J 2008 Acta Phys. Sin. 57 1704 (in Chinese)[刘崇, 葛剑虹, 项震, 陈军 2008 57 1704]

    [8]

    Zhao Z G, Dong Y T, Pan S Q, Liu C, Ge J H, Xiang Z, Chen J, Mao Q M 2010 Chinese J. Lasers 37 2409 (in Chinese)[赵智刚, 董延涛, 潘孙强, 刘崇, 葛剑虹, 项震, 陈军, 毛谦敏 2010 中国激光 37 2409]

    [9]

    Yaakov L, Inon M, Steven J, Avi M 2010 J. Opt. Soc. Am. B 27 1337

    [10]

    Senatsky Y, Bisson J F, Shelobolin A, Shirakawa A, Ueda K 2009 Laser Phys. 19 911

    [11]

    Shi P, Chen W, Li L, Gan A 2007 Appl. Opt. 46 4046

    [12]

    Tereshchenko S A, Podgaetshii V M, Gerasimenko A Y, Savelev M S 2015 IEEE J. Quantum Elect. 45 315

    [13]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831

    [14]

    Liu X W 2009 M. S. Thesis (Xian:Xidian University) (in Chinese)[刘学文 2009 硕士学位论文 (西安:西安电子科技大学)]

    [15]

    Kwon Y K, Zhou F 2003 Opt. Eng. 42 1787

    [16]

    Gerber M, Graf T 2003 IEEE J. Quantum Elect. 40 741

    [17]

    Nadgaran H, Sabaian M 2006 Paramana J. Phys. 67 1119

    [18]

    Gan A, Li L, Shi P, Chen W 2007 Appl. Opt. 46 4046

    [19]

    We X Y, Yu X 1994 Acta Optica Sin. 14 718 (in Chinese)[魏学业, 俞信 1994 光学学报 14 718]

    [20]

    Duan H F, Yang Z P, Wang S Q, Zhang Y D 2002 Chinese J. Lasers 29 517 (in Chinese)[段海峰, 杨泽平, 王淑青, 张雨东 2002 中国激光 29 517]

    [21]

    Yao Q Q, Dong Y, Wang Q H, Jin G Y 2018 Appl. Opt. 57 2245

    [22]

    Feng X X, Zhang L Y, Ye N, Yang B W 2012 Acta Optica Sin. 32 0512002 (in Chinese)[冯新星, 张丽艳, 叶南, 杨博文 2012 光学学报 32 0512002]

  • [1] 刘俊杰, 盛泉, 王盟, 张钧翔, 耿兴宁, 石争, 王爱华, 史伟, 姚建铨. 基于腔内球差选模产生高阶拉盖尔-高斯模式激光.  , 2022, 71(1): 014204. doi: 10.7498/aps.71.20211514
    [2] 李风华, 王翰卓. 利用随机多项式展开的海底声学参数反演方法.  , 2021, 70(17): 174305. doi: 10.7498/aps.70.20210119
    [3] 黄梓樾, 邓宇, 季小玲. 球差对高功率激光上行大气传输光束质量的影响.  , 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [4] 梁殿明, 王超, 史浩东, 刘壮, 付强, 张肃, 战俊彤, 余益欣, 李英超, 姜会林. 基于Zernike模型系数优化的椭球型窗口光学系统像差校正.  , 2020, 69(24): 244203. doi: 10.7498/aps.69.20200933
    [5] 雍康乐, 闫家伟, 唐善发, 张蓉竹. 彗差和球差对涡旋光束斜程传输特性的影响.  , 2020, 69(1): 014201. doi: 10.7498/aps.69.20191254
    [6] 董繁龙, 葛廷武, 张雪霞, 谭祺瑞, 王智勇. 300 W侧面分布式抽运掺Yb全光纤放大器.  , 2015, 64(8): 084205. doi: 10.7498/aps.64.084205
    [7] 顾源, 石荣晔, 王延辉. 分布式反馈激光抽运铯磁力仪灵敏度相关参数研究.  , 2014, 63(11): 110701. doi: 10.7498/aps.63.110701
    [8] 范洪义, 楼森岳, 潘孝胤, 笪诚. 涉及Hermite多项式的二项式定理和Laguerre多项式的负二项式定理.  , 2013, 62(24): 240301. doi: 10.7498/aps.62.240301
    [9] 刘伟伟, 任煜轩, 高红芳, 孙晴, 王自强, 李银妹. 泽尼克多项式校正全息阵列光镊像差的实验研究.  , 2012, 61(18): 188701. doi: 10.7498/aps.61.188701
    [10] 闫 华, 魏 平, 肖先赐. 基于Bernstein多项式的自适应混沌时间序列预测算法.  , 2007, 56(9): 5111-5118. doi: 10.7498/aps.56.5111
    [11] 周永道, 马 洪, 吕王勇, 王会琦. 基于多元局部多项式方法的混沌时间序列预测.  , 2007, 56(12): 6809-6814. doi: 10.7498/aps.56.6809
    [12] 徐 进, 王文祥, 岳玲娜, 宫玉彬, 魏彦玉. 脊加载椭圆波导的多项式表示分析方法.  , 2007, 56(11): 6393-6397. doi: 10.7498/aps.56.6393
    [13] 李东熙, 卢振武, 孙 强, 刘 华, 张云翠. 基于Wassermann-Wolf方程的共形光学系统设计研究.  , 2007, 56(10): 5766-5771. doi: 10.7498/aps.56.5766
    [14] 马少娟, 徐 伟, 李 伟. 基于Laguerre多项式逼近法的随机双势阱Duffing系统的分岔和混沌研究.  , 2006, 55(8): 4013-4019. doi: 10.7498/aps.55.4013
    [15] 吴 楚. 多项式角动量代数的代数表示及实现.  , 2006, 55(6): 2676-2681. doi: 10.7498/aps.55.2676
    [16] 徐秀玮, 任廷琦, 迟永江, 朱友良, 刘姝延. 多模玻色二次多项式型系统的特性函数和准概率分布函数.  , 2006, 55(8): 3892-3897. doi: 10.7498/aps.55.3892
    [17] 马少娟, 徐 伟, 李 伟, 靳艳飞. 基于Chebyshev多项式逼近的随机 van der Pol系统的倍周期分岔分析.  , 2005, 54(8): 3508-3515. doi: 10.7498/aps.54.3508
    [18] 赵光普, 吕百达. 有球差多色高斯光束衍射引起的光谱开关.  , 2004, 53(9): 2974-2979. doi: 10.7498/aps.53.2974
    [19] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响.  , 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [20] 叶开沅. 应力函数或扭曲函数爲三次多项式形式的扭转问题.  , 1953, 9(4): 255-274. doi: 10.7498/aps.9.255
计量
  • 文章访问数:  5746
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-16
  • 修回日期:  2018-06-02
  • 刊出日期:  2018-09-05

/

返回文章
返回
Baidu
map